

2018 NDS® Changes

National Design Specification[®] for Wood Construction (STD120)

John "Buddy" Showalter, P.E. Vice President, Technology Transfer American Wood Council

APPROVED

NATIONAL DESIGN SPECIFICATION* for Wood Construction with Commentary

Participants may download the presentation here: https://www.awc.org/education/main/lists/std-awcstandards/std120-2018-nds-changes

The American Wood Council is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider # 50111237.

Credit(s) earned on completion of this course will be reported to **AIA CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with **AIA CES** for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

COURSE DESCRIPTION

This presentation will provide an overview of the significant changes for wood design per AWC's *National Design Specification (NDS) for Wood Construction.* The 2018 NDS is referenced in the 2018 International Building Code and 2018 International Residential Code and used to design wood structures worldwide. The 2018 NDS references ASCE/SEI Standard 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures which includes increased wind loads. Participants will learn about changes in the 2018 NDS to address increased wind loads and gain an overview of the standard.

LEARNING OBJECTIVES

Upon completion, participants will be better able to identify:

Identify changes in the 2018 NDS

Fasteners

Identify new fastener provisions developed to address increased wind loads

Identify wind load increases in ASCE 7-16 that affect wood design and construction

Nail Design

Design nails for withdrawal and head pullthrough to resist new wind loads

NDS HISTORY

1944	NATIONAL DESIGN SPECIFICATION Jos STATESCARDOL LUMBER M M IST FASTERIOS JS44 MARCHART SPECIFICATION MARCHART SPEC	1977	2001
1962		1982	2005
1968	ALTICAL DESEA SPECIALDA ALTICAL DESEA SPECIALDA Ar Seco Grade Lander ad Dis factorial and Dis factorial and Dis factorial and and Dis factorial and and and and and and and and	1986	2012
1971	Antional closes spectrations	1991	2015
1973		1997	2018

ANSI ACCREDITATION

AWC – ANSI-accredited standards developer

- Consensus Body
 - Wood Design Standards Committee

GOVERNING CODES FOR WOOD DESIGN

2018 NDS referenced in 2018 IBC and IRC

RESIDENTIAL CODE[®] for One- and Two-Family Dwellings

2018 NDS – PRIMARY CHANGES

- References ASCE 7-16
- Added equation for withdrawal design values for smooth shank stainless steel nails
- New provisions for Roof Sheathing Ring Shank nails in accordance with ASTM F 1667
- New design provisions for fastener head pullthrough
- Revision to method for calculating lateral design values for threaded nails
- Revised timber rivet design value tables
- Revised terminology for Fire Design of Wood Members
- *NDS Supplement* design values updated

NDS 2018 CHAPTERS

- General Requirements for Structural Design 1.
- **Design Values for Structural Members** 2.
- **Design Provisions and Equations** 3.
- Sawn Lumber 4
- 5. Structural Glued Laminated Timber
- 6. Round Timber Poles and Piles*
- 7. Prefabricated Wood I-Joists*
- 8. Structural Composite Lumber
- 9. Wood Structural Panels*
- 10. Cross-Laminated Timber
- 11. Mechanical Connections
- 12. Dowel-Type Fasteners
- 13. Split Ring and Shear Plate Connectors*
- 14. Timber Rivets
- 15. Special Loading Conditions*
- 16. Fire Design of Wood Members

* No changes

NDS 2018 APPENDICES

- A. Construction and Design Practices
- Load Duration (ASD Only) Β.
- Temperature Effects C.
- Lateral Stability of Beams D.
- E. Local Stresses in Fastener Groups
- Design for Creep and Critical Deflection Applications F.
- G. Effective Column Length
- H. Lateral Stability of Columns
- Yield Limit Equations for Connections I.
- J. Solution of Hankinson Equation
- Typical Dimensions for Split Ring and Shear Plate Connectors Κ.
- Typical Dimensions for Dowel-Type Fasteners and Washers
- M. Manufacturing Tolerances for Rivets and Steel Side Plates for **Timber Rivet Connections**
- N. Appendix for Load and Resistance Factor Design (LRFD) Mandatory

NDS 2018 SUPPLEMENT

- **1.** Sawn Lumber Grading Agencies
- 2. Species Combinations
- 3. Section Properties
- 4. Reference Design Values
 - Sawn Lumber and Timber •
 - MSR and MEL •
 - Decking •
 - Non-North American Sawn Lumber •
 - Structural Glued Laminated Timber •
 - Timber Poles and Piles •

MINIMUM DESIGN LOADS

- Reference Loads
- Minimum Load Standards
- ASCE 7-16

2018 NDS Changes - STD120

ds 1 Standards

NOTATION

1.6 Notation

- D_{H} = fastener head diameter, in. •
- EI_{eff} = effective bending stiffness of the CLT section, lbs-in.²/ft of panel width ٠
- GA_{eff} = effective shear stiffness of the CLT section, lbs/ft of panel width •
- W_{H} , W_{H}' = reference and adjusted pull-through design value, lbs
- $a_{char} = effective$ char depth, in
- a_{eff} = effective char depth, in.
- t_{ns} = net side member thickness, in.
- $\underline{\beta}_{t} + \underline{\beta}_{eff} = non-linear effective char rate (in./hr.^{0.813}) adjusted for exposure time, t$

RESPONSIBILITY OF DESIGNER

2.1.2 Responsibility of Designer to Adjust for Conditions of Use

Adjusted design values for wood members and connections in particular end uses, shall be appropriate for the conditions under which the wood products are used, taking into account conditions such as the differences in wood strength properties with different moisture contents, load durations, and types of treatment. Common end use conditions are addressed in this Specification. It shall be the final responsibility of the designer to relate design assumptions with design values, and to make design value adjustments appropriate to the end use conditions.

LOAD DURATION FACTOR

Table 2.3.2	Frequently Used Load Duration
	Factors, Cp1

Load Duration	CD	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

- Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability, E_{min}, nor to reference compression perpendicular to grain design values, F_{c⊥}, based on a deformation limit.
- Load duration factors greater than 1.6 shall not be used in the design of structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. Load duration factors greater than 1.6 shall not be used in the design of connections or wood structural panels.

2018 NDS Changes - STD120

2018 NDS Changes - STD120

BEAM STABILITY FACTOR

3.3.3 Beam Stability Factor, C_L

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{b^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, R_B , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

where:

 F_{b}^{*} = reference bending design value multiplied by all applicable adjustment factors except C_{fu}, C_{v} (when $C_{v} \leq 1.0$), and C_L (see 2.3), psi

$$F_{bE} = \frac{1.20 E_{min}'}{R_{B}^{2}}$$

Source: APA

SAWN LUMBER	2				
4.1 General 4.2 Reference Design Values	26 27	4			
4.3 Adjustment of Reference Design Values	28			Confinition .	-/4
4.4 Special Design Considerations	31				
Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber			(1) 1 2 1 1 1		
Table 4.3.8 Incising Factors, C,					
			And it is not the second of the		
			And the second second		-

4.3.7 Flat Use Factor, C_{fu}

4.3.7.1 When sawn lumber 2" to 4" thick is loaded on the wide face, multiplying the reference bending design value, F_b, by the flat use factors, C_{fu}, specified in Tables 4A, 4B, 4C, and 4F, shall be permitted. 4.3.7.2 When members classified as Beams and Stringers are loaded on the wide face, the reference bending design value, F_b, and the reference modulus of elasticity, (E or E_{min}), shall be multiplied by the flat use factors, Cfu, specified in Table 4D.

INCISING FACTOR

4.3.8 Incising Factor, C_i

Dimensional lumber - Allowance for incising factors from company providing incising

Table 4.3.8 Incising Factors, Ci

Design Value	Ci	
E, E _{min}	0.95	-
Fb, Ft, Fc, Fv	0.80	
F _{c⊥}	1.00	

WOOD TRUSSES

4.4.2 Wood Trusses

4.4.2.1 Increased chord stiffness relative to axial loads where a 2" x 4" or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has 3/8" or thicker wood structural panel sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules (see References 32, 33, and 34), shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, E_{min} , by the buckling stiffness factor, C_T , in column stability calculations (see 3.7 and Appendix H). When $\ell_e < 96$ ", C_T shall be calculated as follows:

NATIONAL DESIGN SPECIFICATION FOR WOOD CONST	ROCTION	33	The second second second	Aller
		and here here	S LASS SALES	
		Mark T 1	All Andrews and a state of the	61
STRUCTURAL		CAN DE CARA	NUM, AND ALL STREET	C. C. MARK
GLUED				A State
LAMINATED		A State State State State	A Station of the second	
TIMDED				Vie n
IIWIDER		5 745711		
		Contraction of	ATLANZA PRI SANA	
5.1 General	34			
5.2 Reference Design Values	35			
5.3 Adjustment of Reference Design Values	36		1 1111	
5.4 Special Design Considerations	39		LUU LUU	-
Table 5.1.3 Net Finished Widths of Structural Glu Laminated Timbers	ied		I I I I I I I I I I I I I I I I I I I	
Table 5.2.8 Radial Tension Design Factors, F _n , for Curved Members		Contract of		
Table 5.3.1 Applicability of Adjustment Factors fo	or			-

Source: APA

ADJUSTMENT FACTORS

Table 5.3.1 **Applicability of Adjustment Factors for Structural Glued** Laminated Timber

	ASD only	ASD ASD and LRFD only						LRFD only						
	Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor ¹	Volume Factor ¹	Flat Use Factor	Curvature Factor	Stress Interaction Factor	Shear Reduction Factor	Column Stability Factor	Bearing Area Factor	H Format Conversion Factor	- Resistance Factor	Time Effect Factor
$F_{rt} = F_{rt} x$	CD	C _M 2	C ²	-	-	-	-	-	-	-	-	2.88	0.75	λ

The beam stability factor, C_L, shall not apply simultaneously with the volume factor, C_V, for structural glued laminated timber bending members (see 5.3.6). Therefore, the lesser of these adjustment factors shall apply.
 For radial tension, F_{rt}, the same adjustment factors (C_M and C_t) for shear parallel to grain, F_v, shall be used.

Source: APA

Source: APA

2018 NDS Changes - STD120

Source: APA

VOLUME FACTOR

Volume Factor C_v – Tension parallel to grain

8.3.6 Volume Factor, Cv

8.3.6.1 Reference bending design values, F_b , for structural composite lumber shall be multiplied by the volume factor, C_V , which shall be obtained from the structural composite lumber manufacturer's literature or code evaluation reports. When $C_V \leq 1.0$, the volume factor, C_V , shall not apply simultaneously with the beam stability factor, C_L (see 3.3.3) and therefore, the lesser value of these adjustment factors shall apply. When $C_V > 1.0$, the volume factor, C_L (see 3.3.3).

8.3.6.2 Reference tension design values, F_t , for structural composite lumber shall be multiplied by the volume factor, C_V , which shall be obtained from the structural composite lumber manufacturer's literature or code evaluation reports.

2018 NDS Changes - STD120

Table 8.3.1	Applicability of Adjustment Factors for Structur
	Composite Lumber

3		ASD only	SD ASD and LRFD							
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Volume Factor	Repetitive Member Factor	Column Stability Factor	Bearing Area Factor	ĸ
$\mathbf{F}_{b}' = \mathbf{F}_{b}$	x	CD	См	Ct	$C_L^{\ l}$	C_V^{1}	Cr	22 s 57	2 99	2.5
$\mathbf{F}_{t}' = \mathbf{F}_{t}$	x	CD	C _M	C _t	2	Cv	9 1773	e s E	5	2.7
$F_v = F_v$	X	CD	См	C _t	: :=:	ः ः स ्ति र्थ	ः स्टर	i i i	3	2.8
$F_c = F_c$	X	CD	C _M	C ₁		-	130	Cp	: :#	2.4
$F_{c\perp}' = F_{c\perp}$	x		C _M	C _t				-	Cb	1.0
E' = E	x		C _M	Ct			: :23; 			
Emin ['] = Emin	x	122	C _M	Ct	- 946	- 525	125		- 22	1.5

 See 8.3.6.1 for information on simultaneous application of the volume factor, C_v, and the beam stability factor, C_L, to the reference bending design value, F_h

ral

Source: APA

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

CROSS-LAMINATED TIMBER

10.1	Gene	ral	60
10.2	Refe	ence Design Values	60
10.3	Adju Value	stment of Reference Design	60
10.4	Speci	al Design Considerations	62
Table	10.3.1	Applicability of Adjustment Factors for Cross-Laminated Timber	61
Table 3	10.4.1.1	Shear Deformation Adjustment Factors, K _,	62

Source: Seagate

10

59

FORMAT CONVERSION FACTOR

	Table 10.3.1 Applicabili Timber	ity of Adjus	stme	nt Fa	ctor	s foi	Cro	ss-La	min	
Format			ASD only		ASD and LRFD					
Factor			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Column Stability Factor	Bearing Area Factor	Press Press	
	$F_b(S_{eff})' = F_b(S_{eff})$	x	CD	C _M	Ct	CL	÷	-	2.	
	$F_t(A_{parallel})' = F_t(A_{parallel})$	x	CD	C _M	Ct	÷.	-		2.	
	$F_{v}(t_{v})' = F_{v}(t_{v})$	x	CD	C _M	Ct	in c H	e s e	1	2.	
	$F_s(Ib/Q)_{eff}' = F_s(Ib/Q)_{eff}$	x	5 2 3	C _M	Ct	2		143	2.	
		216 - St.				<u> </u>			1.0	

ated

DEFLECTION – EFFECTIVE SHEAR STIFFNESS

Per ANSI/APA PRG 320-2017

where:

2018 NDS Changes - STD120

(10.4-1)

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

63

MECHANICAL CONNECTIONS

11.1 Gen	eral 64
11.2 Refe	erence Design Values 65
11.3 Adj Valu	ustment of Reference Design tes 65
Table 11.3.1	Applicability of Adjustment Factors for Connections
Table 11.3.3	Wet Service Factors, C _{MP} for Connections
Table 11.3.4	Temperature Factors, C _p for Connections
Table 11.3.6A	Group Action Factors, C., for Bolt or Lag Screw Connections with Wood Side Members
Table 11.3.6B	Group Action Factors, C _g , for 4" Split Ring or Shear Plate Connectors with Wood Side
Table 11.3.6C	Group Action Factors, C, for Bolt or Lag Screw Connections with Steel Side Plates
T. 1.1. 11.2 CD	

T1 Η يرحوه وجود ومجود ومجود ووحو فق

Roof Sheathing Ring Shank Nails

Option to address significant increases in ASCE 7-16 C&C roof wind pressures

11

ADJUSTMENT FACTORS – HEAD PULL-THROUGH

Table 11.3.1 **Applicability of Adjustment Factors for Connections**

		ASD Only	ASD and LRFD								
		Load Duration Factor ¹	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toe-Nail Factor ³
	2		Lat	eral I	.oads				<i>c</i>		~
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	$\vec{Z} = Z x$	CD	C _M	C _t	Cg	C _Δ	-	C _{eg}	-	Cdi	Ct
Split Ring and Shear Plate Connectors	P = P x Q = Q x	C _D C _D	C _M C _M	Ct Ct	Cg Cg	C_{Δ} C_{Λ}	C _d C _d	-	C _{st}	(#) (4)	
Timber Rivets	P = P x Q = Q x	C _D C _D	C _M C _M	Ct Ct	-	C _Δ ⁵	-	-	C _{st} C _{st}	-	-
Spike Grids	Z' = Z x	CD	$C_{\rm M}$	Ct	(<u>111</u>)	C_{Δ}	22	2	-2	S2 (12
55 Ar		1	Withd	lrawa	l Loa	ds					
Nails, spikes, lag screws, wood screws & drift pins	W' = W x	C_{D}	${C_M}^2$	Ct	-	17	æ	C_{eg}	æ	iπ.	Ct
			Pul	l-Thr	ough	Ú.					
Fasteners with Round Heads	$W'_{H} = W_{H} X$	CD	См	C.	1	32	- 22	2	<u></u>	20	125

WET SERVICE FACTORS – HEAD PULL-THROUGH

	Moisture Co	ontent	
Fastener Type	At Time of Fabrication In-Service		C _M
	Withdrawal	Loads	
Lag Screws & Wood	any	≤19%	1.0
Screws	any	> 19%	0.7
Nails & Spikes ³	< 19%	< 19%	1.0
	> 19%	< 19%	0.25 ³
	≤ 19%	> 19%	0.25 ³
	> 19%	> 19%	1.0
	Pull-Through	Loads	
Fasteners with Round	any	≤ 19%	1.0
Heads	any	> 19%	0.7

1) one fastener only, or

2) two or more fasteners placed in a single row parallel to grain, or

3) fasteners placed in two or more rows parallel to grain with separate splice plates for each row.
 3. For Roof Sheathing Ring Shank (RSRS) and Post-Frame Ring Shank (PF) nails, C_M=1.0.

CHAPTER 12

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

73

DOWEL-TYPE FASTENERS

(BOLTS, LAG SCREWS, WOOD SCREWS, NAILS/SPIKES, **DRIFT BOLTS, AND DRIFT PINS)**

12.1	Ge	neral	74
12.2	Re	ference Withdrawal Design Values	76
12.3	Re	ference Lateral Design Values	83
12.4	Co	mbined Lateral and Withdrawal	
	Lo	ads	89
12.5	Ad	justment of Reference Design Value	s 89
12.6	Mu	Iltiple Fasteners	93
Table 11	2.2A	Lag Screw Reference Withdrawal Design Values	
Table 12	2.2B	Wood Screw Reference Withdrawal Design Values	
Table 12	2.2C-E	Nail and Spike Reference Withdrawal Design Values	
Table 12	1.2F	Head Pull Through, W _n	
Table 12	2.3.1A	Yield Limit Equations	
Table 12	2.3.1B	Reduction Term, R.	
Table 12	2.3.3	Dowel Bearing Strengths, $F_{e^{i}}$ for Dowel-Type Fasteners in Wood Members	
Table 12	2.3.3A	Assigned Specific Gravities	
Table 12	2.3.3B	Dowel Bearing Strengths for Wood Structural Panels	
Table 12	2.5.1A	End Distance Requirements	
Table 12	2.5.1B	Spacing Requirements for Fasteners in a Row	9(
Table 12	2.5.1C	Edge Distance Requirements	
Table 12	2.5.1D	Spacing Requirements Between Rows	
Table 12	2.5.1E	Edge and End Distance and Spacing Requirements	
Table 12	2.5.1F	Perpendicular to Grain Distance Requirements	
Table 12	2.5.1G	End Distance, Edge Distance, and Fastener Spacing	
Tables 1	2A-I	BOLTS: Reference Lateral Design Values	

12

2018 NDS Changes - STD120

TYPICAL NAIL HEADS

TYPICAL NAIL SHANKS

2018 NDS Changes - STD120

Sketches courtesy ISANTA

Barbed

Photos courtesy of Falcon Fasteners

ROOF SHEATHING RING SHANK NAILS

Table L4 Standard Common, Box, and Sinker Steel Wire Nails^{1,2}

12.1.6 Nails and Spikes

12.1.6.1 Installation requirements apply to common steel wire nails and spikes, box nails, sinker nails, Roof Sheathing Ring Shank nails, and Post-Frame Ring Shank nails meeting requirements in ASTM F1667. Nails and spikes used in engineered construction shall meet the Supplementary Requirements of ASTM F1667 S1 Nail Bending Yield Strength. Nail specifications for engineered construction shall include the minimum lengths, head diameters, and shank diameters for the nails and spikes to be used. See Appendix Table L4 for standard common, box, and sinker nail dimensions, Appendix Table L5 for standard Post-Frame Ring Shank nail dimensions, and <u>Appendix Table L6 for Roof Sheathing Ring Shank nail dimensions</u>.

12.2.3 Nails and Spikes

12.2.3.1 Smooth shank nails or spikes

(a) The nail or spike reference withdrawal design value, W, in lbs/in. of penetration, for a smooth shank (bright or galvanized) carbon steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicular to the wood fibers, shall be determined from Table 12.2C or Equation 12.2-3, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2C. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1380 G^{5/2} D

value, W, in lbs/in. of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

 $W = 465 G^{3/2} D$

(12.2-3)

(b) The nail or spike reference withdrawal design

CARBON STEEL NAIL WITHDRAWAL

Table 12.2C (E	Bright	right or Galvanized) Carbon Steel Nail and Spike Reference Withdrawal Design Values, W ^{1,3}																
Tabulated withdrawal design values, W, are in pounds per inch of fastener penetration into side grain of wood member (see 12.2.3.1)																		
Specific Gravity², G		Smooth Shank (Bright or Galvanized) Carbon Steel Nail and Spike Diameter, D																
	0.092"	0.099"	0.113"	0.120"	0.128"	0.131"	0.135"	0.148"	0.162"	0.177"	0.192"	0.207"	0.225"	0.244"	0.263"	0.283"	0.312"	0.375"
0.73	58	62	71	75	80	82	85	93	102	111	121	130	141	153	165	178	196	236
0.71	54	58	66	70	75	77	79	87	95	104	113	121	132	143	154	166	183	220
0.68	48	52	59	63	67	69	71	78	85	93	101	109	118	128	138	149	164	197
0.67	47	50	57	61	65	66	68	75	82	90	97	105	114	124	133	144	158	190
0.58	33	35	40	42	45	46	48	52	57	63	68	73	80	86	93	100	110	133
0.55	28	31	35	37	40	41	42	46	50	55	59	64	70	76	81	88	97	116
0.51	24	25	29	31	33	34	35	38	42	45	49	53	58	63	67	73	80	96
0.50	22	24	28	29	31	32	33	36	40	43	47	50	55	60	64	69	76	91

1. Tabulated withdrawal design values, W, for nail or spike connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

2. Specific gravity shall be determined in accordance with Table 12.3.3A.

3. Tabulated withdrawal design values for smooth shank nails are permitted to be used for deformed shank nails of equivalent diameter, D.

STAINLESS STEEL NAIL WITHDRAWAL

NEW

Stainless Steel Nail and Spike Reference Withdrawal Design Values, W^{1,3} Table 12.2D

Tabulated	alated withdrawal design values, W, are in pounds per inch of fastener penetration into side grain of wood member (see 12.2.3.1)																	
Specific Gravity ² , G		Smooth Shank Stainless Steel Nail and Spike Diameter, D																
	0.092"	0.099"	0.113"	0.120"	0.128"	0.131"	0.135"	0.148"	0.162"	0.177"	0.192"	0.207"	0.225"	0.244"	0.263"	0.283"	0.312"	0.375"
0.73	27	29	33	35	37	38	39	43	47	51	56	60	65	71	76	82	90	109
0.71	26	28	31	33	36	36	38	41	45	49	53	58	63	68	73	79	87	104
0.68	24	26	29	31	33	34	35	39	42	46	50	54	59	64	69	74	81	98
0.67	23	25	29	31	33	33	34	38	41	45	49	53	57	62	67	72	80	96
0.58	19	20	23	25	26	27	28	30	33	36	39	43	46	50	54	58	64	77
0.55	17	19	21	23	24	25	26	28	31	34	36	39	43	46	50	54	59	71
0.51	16	17	19	20	22	22	23	25	27	30	33	35	38	41	45	48	53	64
0.50	15	16	19	20	21	22	22	24	27	29	32	34	37	40	43	47	51	62

1. Tabulated withdrawal design values, W, for nail or spike connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

2. Specific gravity shall be determined in accordance with Table 12.3.3A.

3. Tabulated withdrawal design values for smooth shank nails are permitted to be used for deformed shank nails of equivalent diameter, D.

SMOOTH SHANK NAIL WITHDRAWAL STRENGTH

12.2.3.2 Deformed shank nails

(a) The reference withdrawal design value, in lbs/in. of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

 $W = 1800 G^2 D$ (12.2-5)

(b) For Roof Sheathing Ring Shank nails (Appendix Table L6) or Post-Frame Ring Shank nails (Appendix Table L5) that are uncoated carbon steel, reference withdrawal design values determined from Table 12.2E or Equation 12.2-5 shall be permitted to be multiplied by 1.25.

RSRS NAIL WITHDRAWAL

Roof Sheathing Ring Shank Nail and Post-Frame Ring Shank Nail Reference Table 12.2E Withdrawal Design Values, W^{1,2}

Tabulated withdrawal design values, W, are in pounds per inch of ring shank penetration into side grain of wood main member (see Appendix Table L5 and Table L6).

Specific Gravity ³ , G	Roof Sheat Dia	thing Ring S ameter, D (in	Shank Nail n.)	<u>Post-Frame Ring Shank Nail</u> Diameter, D (in.)						
	0.113	0.120	0.131	0.135	0.148	0.177	0.200			
0.73	108	115	126	129	142	170	192			
0.71	103	109	119	122	134	161	181			
0.68	94	100	109	112	123	147	166			
0.67	91	97	106	109	120	143	162			
0.58	68	73	79	82	90	107	121			
0.55	62	65	71	74	81	96	109			
0.51	53	56	61	63	69	83	94			
0.50	51	54	59	61	67	80	90			

1. Tabulated withdrawal design values, W, for Roof Sheathing Ring Shank (RSRS) nails and Post-Frame Ring Shank (PF) nails shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

2. Tabulated reference withdrawal design values, W, are only applicable to Roof Sheathing Ring Shank (RSRS) nails or Post-Frame Ring Shank (PF) nails meeting requirements of ASTM F1667.

3. Specific gravity shall be determined in accordance with Table 12.3.3A.

0.207
199
188
172
167
125
113
97
93

12.2.5 Fastener Head Pull-Through

12.2.5.1 For fasteners with round heads, the reference pull-through design value, W_H, in pounds for wood side members shall be determined from Table 12.2F or Equation 12.2-6, within the range of fastener head diameters, D_H, and net side member thicknesses, t_{ns}, given in Table 12.2F. Reference pull-through design values, W_H, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted pull-through design values, W'H.

 $W_{H} = 690 \pi D_{H} G^{2} t_{ns}$ for $t_{ns} \le 2.5 D_{H}$ (12.2-6a)

Where:

 π D_H = perimeter for fasteners with round heads

D_H = fastener head diameter, in.

G = specific gravity of side member

Pull-through for other materials shall be determined in accordance with 11 1 1 3

$W_{H} = 1725 \pi D H^{2} G^{2}$ for $t_{ns} > 2.5 D H$ (12.2-6b)

FASTENER HEAD PULL-THROUGH

Table 12.2F Head Pull-Through, W_H¹

NEW

Tabulated pull-through design values, W_{H} , are in pounds.

	r													
			Net Side Member Thickness, t _{ns} (in.)											
Side Member Specific Gravity ² , G	Head Diameter, D _H (in.)	5/16	3/8	7/16	15/32	1/2	19/32	5/8	23/32	3/4	1	1-1/8	1-1/2	
	0.234	40	48	55	59	63	74	74	74	74	74	74	74	
	0.250	42	51	59	64	68	80	85	85	85	85	85	85	
	0.266	45	54	63	68	72	86	90	96	96	96	96	96	
	0.281	48	57	67	71	76	90	95	107	107	107	107	107	
	0.297	50	60	70	75	80	96	101	116	120	120	120	120	
0.50	0.312	53	63	74	79	85	100	106	122	127	132	132	132	
0.50	0.344	58	70	82	87	93	111	117	134	140	160	160	160	
	0.375	64	76	89	95	102	121	127	146	152	191	191	191	
	0.406	69	83	96	103	110	131	138	158	165	220	223	223	
	0.438	74	89	104	111	119	141	148	171	178	237	260	260	
	0.469	79	95	111	119	127	151	159	183	191	254	286	298	
	0.500	85	102	119	127	135	161	169	195	203	271	305	339	

1. Tabulated pull-through design values, W_H, shall be multiplied by all adjustment factors as applicable per Table 11.3.1.

2. Specific gravity, G, shall be determined in accordance with Table 12.3.3A for lumber and Table 12.3.3B for panels.

FASTENER UPLIFT CAPACITY

Fastener Uplift Capacity = lesser of W' and W_{H}'

Fastener Uplift Capacity - Roof Sheathing Ring Shank Nail

Using 2018 NDS section 12.2, calculate the Allowable Stress Design (ASD) reference withdrawal capacity and head pull-through capacity of a 0.131" diameter, 3" long roof sheathing ring shank (RSRS) nail in the narrow face of a Douglas Fir-Larch 2x6 with a 7/16 in. thick OSB side member.

```
Main member:
Douglas Fir-Larch (DF-L) 2x6 (G = 0.5)
Side member:
7/16 in. thick Oriented Strand Board (OSB) (G = 0.5)
```

```
Fastener Dimensions:
Dash No. 05 (NDS Table L6)
Length = 3 in.
Diameter = 0.131 in.
Head diameter = 0.281 in.
TL = 1.5 in.
```


Fastener Uplift Capacity - Roof Sheathing Ring Shank Nail (cont.)

Fastener Uplift Capacity - Roof Sheathing Ring Shank Nail (cont.)

Checking Fastener Withdrawal

$W := 1800 \cdot G^2 \cdot D$	NDS Equation 12.2-5
W = 59	Reference withdrawal design value. Compare to NDS Table 12.2E, W = 59 lbs/in
Resistance := TL W	
Resistance = 88	Resistance based on main member deformed shank penetration (lbs)

Fastener Uplift Capacity - Roof Sheathing Ring Shank Nail (cont.)

Checking Fastener Head Pull-Through

 $t_{ns} = 0.438$

2.5D_H = 0.703 2.5D_H greater than t_{ns} , so NDS Equation 12.2-6a applies

 $W_H := 690 \cdot \pi \cdot D_H \cdot G^2 \cdot t_{ns}$ NDS Equation 12.2-6a

 $W_H = 67$ Head pull-through capacity (lbs). Compare to NDS Table 12.2F, $W_H = 67$ lbs

Fastener head pull-through of 67 lbs is less than withdrawal capacity of 88 lbs and controls design capacity. See NDS Table 11.3.1 for application of additional adjustment factors for connections based on end use conditions.

FASTENER UPLIFT CAPACITY

2018 WFCM Table 3.10

	_		Fas	tener	Uplift	Capaci	ty ^{2,3} (
Sheathing Thickness (in.)	3/8		7/	'16	15	19	
Framing Member SG	0.42	0.49	0.42	0.49	0.42	0.49	0.42
8d common ⁴	70	91	68	100	67	98	63
10d box ⁴	84	101	82	118	81	120	77
RSRS-03 ⁵	91	91	99	106	99	114	99

- 2 Minimum capacity of withdrawal and fastener head pull-through is tabulated.
- ³ Tabulated values include a load duration factor adjustment, C_D=1.6.
- 4 Tabulated values for 8d common nails and 10d box nails are applicable to carbon steel nails (bright or galvanized).
- 5 Tabulated values for RSRS-03 nails are applicable to carbon steel (bright or galvanized) or stainless steel nails.

bs)							
32	23/32						
0.49	0.42	0.49					
92	58	86					
114	73	108					
135	99	135					

s (bright or galvanized). stainless steel nails.

ASCE 7-16 WIND LOAD CHANGES

Figure 26.5-1B Basic Wind Speeds for Risk Category II Buildings and Other Structures

ASCE 7 WIND LOAD CHANGES

C&C Loads

- Increase in hurricane regions
- Larger roof zones
- Interior roof zones increase most •

2018 NDS Changes - STD120

ASCE 7 WIND LOAD CHANGES

C&C Roof Coefficients

		Ratio of ASCE 7-16/ASCE 7-10											
Roof Slope			Roof G	C _p - GC	pi	Roof Overhang GC _p - GC _{pi}							
	3r	3e	2r	2n	2e	1	3r	Зе	2r	2n	2e	1	
7 < Θ ≤ 20	1.36	1.14	1.69	1.69	1.16	2.02	1.27	1.11	1.59	1.59	1.14	-	
20 < Θ ≤ 27	1.36	0.96	1.43	1.43	0.89	1.56	1.27	0.97	1.36	1.36	0.91	_	
27 < 0 ≤ 45	1.58	2.45	1.43	1.58	1.43	1.68	1.40	2.00	1.30	1.40	1.30	-	

FASTENER UPLIFT CAPACITY COMPARISONS

110mph Exposure B, 7/16" WSP, Framing G = 0.42, Rafter spacing = 24"

• For lower wind speed zones and lower G framing, RSRS gives simpler nailing schedule option

Nail Type	Perimeter Nailing (Zones 2 & 3)	Interior Nailing (Zone 1)	
RSRS	6/12	6/12	à
8d Common	6/6	6/12	

FASTENER UPLIFT CAPACITY COMPARISONS

180mph Exposure B, 19/32" WSP, Framing G = 0.55, Rafter spacing = 24"

- Assume complex roof where separating perimeter and interior zones is difficult
- RSRS nails with 19/32" WSP allow 6/6 nailing everywhere simple
- For higher wind speeds and higher G framing, RSRS provides beneficial options

Nail Type	Perimeter Nailing	Interior Nailing
RSRS	6/6	6/12
8d Common	4/4	6/6

DOWEL DIAMETER

12.3.7 Dowel Diameter

12.3.7.1 Where used in Tables 12.3.1A and 12.3.1B, the fastener diameter shall be taken as:

(a) D for smooth shank nails and deformed shank nails in accordance with ASTM F1667,

(b) D for unthreaded full-body diameter fasteners, and

(c) D_r for reduced body diameter fasteners or threaded fasteners except as provided in 12.3.7.2.

12.3.7.2 For threaded full-body fasteners (see Appendix L), D shall be permitted to be used in lieu of D_r where the bearing length of the threads does not exceed 1/4 of the full bearing length in the member holding the threads. Alternatively, a more detailed analysis accounting for the moment and bearing resistance of the threaded portion of the fastener shall be permitted (see Appendix I).

RSRS NAIL LATERAL VALUES

Table 12Q COMMON, BOX, SINKER, or ROOF SHEATHING RING SHANK (RSRS) STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3}

> for sawn lumber or SCL with wood structural panel side members with an effective G=0.50 (tabulated lateral design values are calculated based on an assumed length of nail penetration, p, into the main member equal to 10D)

-	Side Member Thickness	Na il Diameter	Common Wire Nail	Box Nail	Sinker Nail	RSRS (Dash No.)	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods
	ts	D													
	in.	in.	Pen	inywe	ight		lbs.	lbs.	lbs.	bs.	lbs.	lbs.	bs.	lbs.	bs.
-	3/8	0.099		6d	7d		47	45	43	43	42	40	40	38	37
		0.113	6d	8d	-8d	01	60	56	54	54	52	51	50	47	47
- 1		0.120			10d	02	67	62	60	60	58	56	56	52	52
- 1		0.128		10d			75	70	68	67	65	63	63	59	58
- 1		0.131	8d			03	78	73	71	70	68	66	65	61	61
		0.135		16d	12d		83	78	75	74	72	70	69	65	64
_		0.148	10d	20d	16d		94	88	85	84	82	79	78	73	72
	7/16	0.099		6d	7d		50	47	45	45	44	43	42	40	40
		0.113	6d	8d	8d	01	62	58	56	56	55	53	52	49	49
- 1		0.120			10d	02	69	65	63	62	60	59	58	55	54
- 1		0.128		10d			77	72	70	69	68	66	65	61	60
- 1		0.131	8d			03	80	75	73	72	70	68	67	63	63
		0.135		16d	12d		85	80	77	76	74	72	71	67	66
		0.148	10d	20d	16d		96	90	87	86	84	81	80	76	75
_		0.162	16d	40d			114	106	102	101	99	96	95	89	88
		1													

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

2. Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) and for roof sheathing ring shank nails (see Appendix Table L6) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D and nail bending yield strengths, F_{vb}, of 100,000 psi for $0.099'' \le D \le 0.142''$, 90,000 psi for $0.142'' \le D \le 0.177''$, 80,000 psi for $0.177'' \le D \le 0.236''$, and 70,000 psi for $0.236'' \le D \le 0.273''$.

RSRS NAIL LATERAL VALUES

Table 12R COMMON, BOX, SINKER, or ROOF SHEATHING RING SHANK (RSRS) STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3}

with wood structural panel side members with an effective G=0.42

(tabulated lateral design values are calculated based on an assumed nail penetration, p, into the main member equal to 10D)

Side Member Thickness	Nail Diameter	Common Wire Nail	Box Nail	Sinker Nail	RSRS (Dash No.)	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	
t ,	D	_					_								
In.	In.	Pen	inywe	ight		lbs.	DS.	bs.	bs.	lbs.	DS.	bs.	lbs.	lbs.	
3/8	0.099		6d	7d		41	39	37	37	36	35	35	33	33	
	0.113	6d	8d	8d	01	52	49	48	47	46	45	45	42	42	
	0.120			10d	02	58	55	53	53	52	50	50	47	47	
	0.128		10d			66	62	60	60	59	57	56	53	53	
	0.131	8d			03	69	65	63	63	61	59	59	56	55	
	0.135		16d	12d		73	69	67	66	65	63	62	59	58	
	0.148	10d	20d	16d		84	79	76	76	74	72	71	67	66	
7/16	0.099		6d	7d		42	40	39	38	38	37	36	35	34	
	0.113	6d	8d	8d	01	53	50	49	48	48	46	46	43	43	
	0.120			10d	02	59	56	54	54	53	51	51	48	48	
	0.128		10d			67	63	61	61	60	58	57	54	54	
	0.131	8d			03	70	66	64	64	62	60	60	57	56	
	0.135		16d	12d		74	70	68	67	66	64	63	60	59	
	0.148	10d	20d	16d		84	80	77	76	75	73	72	68	67	
	0.162	16d	40d			100	95	92	91	89	86	85	81	80	

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

2. Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) and for roof sheathing ring shank nails (see Appendix Table L6) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D and nail bending yield strengths, F_{vh}, of 100,000 psi for $0.099'' \le D \le 0.142''$, 90,000 psi for $0.142'' \le D \le 0.177''$, 80,000 psi for $0.177'' \le D \le 0.236''$, and 70,000 psi for $0.236'' \le D \le 0.273''$.

POST FRAME RING SHANK LATERAL VALUES

Table 12S **POST FRAME RING SHANK NAILS: Reference Lateral Design Values, Z, for** Single Shear (two member) Connections^{1,2,3}

1	1 1	
	0	

for sawn lumber or SCL with both members of identical specific gravity (tabulated lateral design values are calculated based on an assumed length of nail penetration, p, into the main member equal to 10D)

Side Member Thickness	Nail Diameter	Nail Length	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood	G=0.36 Eastern Softwoods Spruce-Pine-Fir (S) Western Cedars Western Woods	G=0.35 Northern Species
ts	D	L										
in.	in.	in.	lb	lb	lb	lb	b	lb	lb	lb	b	b
1/2	0.135	3, 3.5	115	89	79	77	72	66	65	56	55	53
-	0.148	3-4.5	129	101	90	87	82	75	73	64	63	61
	0.177	3 - 8	167	133	119	116	109	102	99	87	86	83
	0.200	3.5 - 8	179	143	129	126	119	110	108	95	93	91
8	0.207	4 - 8	185	148	134	131	123	115	112	99	97	94
3/4	0.135	3, 3.5	135	108	94	91	84	76	74	63	61	58
2424544	0.148	3-4.5	154	121	105	102	94	85	83	70	69	66
	0.177	3 - 8	200	153	134	130	121	111	107	92	90	87
	0.200	3.5 - 8	212	162	143	139	129	118	115	100	97	94
ia	0.207	4 - 8	216	166	147	143	133	122	119	103	101	97

 Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for post frame ring shank nails (see Appendix Table L5) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; and nail bending yield strengths, F_{ab}, of 100,000 psi for 0.120"< D <0.142", 90,000 psi for 0.142"< D ≤0.192", and 80,000 psi for 0.192"< D ≤0.207".</p>

3. Where the post-frame ring shank nail penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

4. Nail length is insufficient to provide 10D penetration. Tabulated lateral design values, Z, shall be adjusted per footnote 3.

2018 NDS Changes - STD120

REVISED

POST FRAME RING SHANK LATERAL VALUES

Table 12T POST FRAME RING SHANK NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3} REVISED

for sawn lumber or SCL with ASTM A653, Grade 33 steel side plates (tabulated lateral design values are calculated based on an assumed nail penetration, p, into the main member equal to 10D)

Side Member Thickness	Nail Diameter	Nail Length	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood	G=0.36 Eastern Softwoods Spruce-Pine-Fir (S) Western Cedars Western Woods	G=0.35 Northern Species
t _e	D	L	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
0.036	0 135	3 3 5	127	108	100	98	93	87	86	77	75	73
(20 gage)	0.148	3 - 4.5	145	123	114	111	106	100	98	87	86	83
1 3-3-1	0.177	3 - 8	174	171	157	154	147	138	135	121	119	115
	0.200	3.5 - 8	178	178	172	168	160	150	147	132	129	126
	0.207	4 - 8	179	179	179	175	167	157	154	137	135	131
0.048	0.135	3, 3.5	128	109	101	99	94	88	87	78	76	74
(18 gage)	0.148	3 - 4.5	145	124	115	112	107	101	99	88	87	84
	0.177	3 - 8	201	171	158	155	147	138	136	122	119	116
	0.200	3.5 - 8	219	187	172	169	161	151	148	133	130	126
	0.207	4 - 8	229	195	179	176	167	157	154	138	136	132

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, are for post frame ring shank nails (see Appendix Table L5) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; and nail bending yield strengths, F_{yb}, of 100,000 psi for 0.120"< D ≤0.142" 90,000 psi for 0.142"< D ≤0.192", and 80,000 psi for 0.192"< D ≤0.207".

3. Where the post-frame ring shank nail penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

- is .
- 76) 29
- _
- l

CHAPTER 13

Figure 13A Split Ring Connector

	Figure 13B	Pressed Steel Shear Plate Connector
Figure 13C	Malleable Iron Shear Connector	Plate
	633	

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

NO CHANGE SPLIT RING AND SHEAR PLATE CONNECTORS

13.1	Gen	eral	120
13.2	Refe	erence Design Values	121
13.3	Plac	ement of Split Ring and Shear	
	Plat	e Connectors	127
Table 1.	3A	Species Groups for Split Ring and Shear Plate Connectors	121
Table 1.	3.2A	Split Ring Connector Unit Reference Design Values	
Table 1.	3.2B	Shear Plate Connector Unit Reference Design Values.	
Table 1.	3.2.3	Penetration Depth Factors, C _e , for Split Ring and Shear Plate Connectors Used with Lag Screws	
Table 1.	3.2.4	Metal Side Plate Factors, C _a , for 4" Shear Plate Connectors Loaded Parallel to Grain	
Table 1	3.3.2.2	Factors for Determining Minimum Spacing Along Connector Axis for C ₄ = 1.0.	128
Table 1.	3.3.3.1-1	Factors for Determining Minimum Spacing Along Axis of Cut of Sloping Surfaces	
Table 1.	3.3.3.1-2	Factors for Determining Minimum Loaded Edge Distance for Connectors in End Grain	
Table 1.	3.3.3.1-3	Factors for Determining Minimum Unloaded Edge Distance Parallel to Axis of Cut	
Table 1.	3.3.3.1-4	Factors for Determining Minimum End Distance Parallel to Axis of Cut	
Table 1.	3.3	Geometry Factors, C,, for Split Ring and Shear Plate	131

2018 NDS Changes - STD120

E-

CHAPTER 14

133 NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION **TIMBER RIVETS** 14.1 General 134 14.2 Reference Design Values 134 14.3 Placement of Timber Rivets 136 Table 14.2.3 Metal Side Plate Factor, Cst, for Table 14.3.2 Minimum End and Edge Distances for Timber Rivet Joints...... 136 Tables 14.2.1 A-F Reference Wood Capacity Design Values Parallel to Grain, P., for Timber Rivets 137 A - Rivet Length = $1-\frac{1}{2}$ ", s_p = 1", s_q = 1" 137 B - Rivet Length = $1-\frac{1}{2}$ ", s_p = $1-\frac{1}{2}$ ", s_q = 1"...138 C - Rivet Length = $2-\frac{1}{2}$ ", s_p = 1", s_q = 1" 139 D - Rivet Length = $2-\frac{1}{2}$ ", $s_p = 1-\frac{1}{2}$ ", $s_q = 1$ "...140 E - Rivet Length = 3-1/2", s_p = 1", s_q = 1"...... 141 **F** - Rivet Length = $3-\frac{1}{2}$ ", $s_p = 1-\frac{1}{2}$ ", $s_q = 1$ "... 142

2018 NDS Changes - STD120

WOOD CAPACITY PARALLEL-TO-GRAIN

Limits max distance perp-to-grain between outermost rivet rows to 12

Table 14.2.1A	Refere	nce Wo	od Capac	ity Design	ı Val	ues Pa	arallel	to Grain,	P _w , for T	imber Ri	vets	
			Rivet L	.ength = 1-1	1/2''	$s_p = 1$	" s _q =	= 1''				
	Member Thickness	Rivets			I	P _w (lbs.)			Γ			
	in.	row		Ν	lo. of	rows per	r side					
			2	4	6		8	10	12			
		2	2050	4900	7650	10	770	14100	17050			
		4	3010	6460	9700	13	530	17450	20840			
		6	4040	8010	11770	0 16	320	20870	24770			
		8	5110	9480	13970) 18	840	23910	28230			
	3	Table	14.2.1F	Refe	renc	e Woo	od Capa	acity Des	ign Valu	es Parall	el to Gra	ain, P
]	Rivet L	ength = 3	-1/2" s _p	= 1-1/2''	s _q = 1''	_
				Memb	ber	Rivets			P	(lbs.)		
				Thickn	iess	per			- w	()		
				in.		row			No. of ro	ws per side		
		_					2	4	6	8	10	12
						2	2770	6740	10490	14650	19100	2363
						4	4080	8890	13310	18410	23640	2888
					- h	0	5470	11020	10100	22200	28280	343
					- 1	10	8000	15040	21780	20110	36510	442
				5		12	9040	16640	24370	32630	40630	445
						14	9900	18630	26630	35900	44380	535
						16	10390	20590	29340	38460	48080	577
						18	11550	22350	31950	41420	51510	616
						20	12230	24450	34230	43960	54430	6499

or Timber Rivets

WOOD CAPACITY PERPENDICULAR-TO-GRAIN

Limits rivets per row

Table 14.2.2AValues of qw (lbs) Perpendicular to Grain for Timber Rivets

sp = 1''

s_	Rivets				
in	per		Nu	unber of ro	ws
	row	2	4	6	8
	2	776	809	927	1089
	3	768	806	910	1056
	4	821	870	963	1098
	5	874	923	1013	1147
	6	959	1007	1094	1228
	7	1048	1082	1163	1297
1	8	1173	1184	1256	1391
	9	1237	1277	1345	1467
	10	1318	1397	1460	1563
	11	1420	1486	1536	1663
	12	1548	1597	1628	1786
	13	1711	1690	1741	1882
	2	905	921	1042	1211
	3	896	918	1024	1174
	4	958	990	1083	1221
	5	1020	1051	1140	1276
1-1/2	6	1119	1146	1231	1365
	7	1223	1232	1308	1442
	8	1368	1348	1413	1547
	9	1811	1731	1772	1905

2018 NDS Changes - STD120

10
1255
1202
1232
1284
1371
1436
1525
1624
1752
1850
1970
2062
1395
1337
1370
1428
1524
1597
1695
2110

CHAPTER 15

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUC	TION 145	Figure 15A Spaced Ring or	Column Joined by Split Shear Plate Connectors	Figure 15B Mechanically Lam Up Columns
NO CHANGE SPECIAL LOADING CONDITIONS		Condition Condition	a Book an b' cx Typical shear plate connection in end block of spaced column	distance 0 Space Johnson 0 Space Johns
15.1 Lateral Distribution of a	146	Figure 15C Typi	ical Nailing Schedules for Buil	t-Up Columns
15.2 Spaced Columns	146	Π	5	Ω
15.3 Built-Up Columns	148	24-	34-	
15.4 Wood Columns with Side Loads and Eccentricity	151		8- 8-	
Table 15.1.1 Lateral Distribution Factors for Moment Table 15.1.2 Lateral Distribution in Terms of	t146	é" o	1'&"	₹ ²⁶ =0
Proportion of Total Load	146) 	

Two 2"x 4" laminations with one row of staggered 10d common wire nails $(D = 0.148^{\circ}, L = 3^{\circ})$

1

Laminated Built-

CHAPTER 16

CHAR RATE

16.2.1 Char Rate

16.2.1.1 The non-linear char rate to be used in this procedure can be estimated from published nominal 1-hour char rate data using the following equation:

$$\beta_t = \beta_n \text{ at one hour}$$
 (16.2-1)

where:

- βt = <u>non-linear</u> char rate (in./hr.^{0.813}), adjusted for exposure time, t
- β_n = nominal char rate (in./hr.), linear char rate based on 1-hour exposure
- t = exposure time (hr.)

A nominal char rate, β_n , of 1.5 in./hr. is commonly assumed for sawn <u>lumber</u>, structural glued laminated softwood <u>timber</u>, laminated veneer lumber, parallel strand lumber, laminated strand lumber, and crosslaminated timber.

16.2.1.2 For sawn lumber, structural glued laminated softwood <u>timber</u>, laminated veneer lumber, parallel strand lumber, and laminated strand lumber, <u>the char</u> depth, a_{char}, for each exposed surface shall be calculated as:

$$a_{char} = \beta_t t^{0.813}$$

(16.2-2)

Required Fire	Char Depth,	Effective Char Depth,
Resistance (hr.)	a _{char} (in.)	a _{eff} (in.)
1-Hour	1.5	1.8
1½-Hour	2.1	2.5
2-Hour	2.6	3.2
		Structura
		Fire
		Design

For sawn lumber, structural glued laminated softwood timber, laminated veneer lumber, parallel strand lumber, and laminated strand lumber, assuming a nominal char rate, $\beta_n = 1.5$ in./hr., the char depth, a_{char} , and effective char depth, aeff, are shown in Table 16.2.1A.

For cross-laminated timber manufactured with laminations of equal thickness and assuming a nominal char rate, β_n , of 1.5 in./hr., the effective char depth, a_{eff} , for each exposed surface is shown in Table 16.2.1B.

CONNECTIONS

16.3 Wood Connections

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

APPENDIX L

Table L3 Standard Wood Screws^{1,6}

1. Tolerances specified in ANSI/ASME B18.6.1

2. Thread length on cut thread wood screws is approximately 2/3 of the wood screw length, L.

3. Single lead thread shown. Thread length is at least four times the screw diameter or 2/3 of the wood screw length, whichever is greater. Wood screws which are too short to accommodate the minimum thread length, have threads extending as close to the underside of the head as practicable.

4. Taken as the average of the specified maximum and minimum limits for body diameter of rolled thread wood screws.

5. Taken as the average of the specified maximum and minimum limits for head diameter.

It is permitted to assume the length of the tapered tip is 2D.

20	24
0.32	0.372
0.255	0.298
0.616	0.724

APPENDIX L

NEW

Table L6 Roof Sheathing Ring Shank Nails¹

Dash	D	L	TL]
No.				
01	0.113	2-3/8	1-1/2	0.2
02	0.120	2-1/2	1-1/2	0.2
03	0.131	2-1/2	1-1/2	0.2
04	0.120	3	1-1/2	0.2
05	0.131	3	1-1/2	0.2

1. Tolerances are specified in ASTM F1667.

l shank, in.
012 in.
in
H
281
281
281
281
281

NDS 2018 SUPPLEMENT

- New and revised grades of MSR & MEL \bullet
- Redwood grades requiring "close grain," ulletremoved
- Addition of Norway Spruce (from Norway) ulletto foreign species dimension lumber
- Addition of shear-free moduli of elasticity lacksquarefor structural glulam

MORE INFO???

http://awc.org/codesstandards/publications

2018 NDS Changes - STD120

info@awc.org | www.awc.org

This concludes the American Institute of Architects Continuing Education Systems Course

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of American Wood Council (AWC) is prohibited. © American Wood Council 2017

Education Resources

www.awc.org/education education@awc.org

2018 NDS Changes - STD120

In-Person Seminars Monthly Webinars **Recorded Presentations**

CEUs Available

Code Official Connections

www.awc.org/codeconnections membership@awc.org

2018 NDS Changes - STD120

Free to Qualified Officials Free Standard **Pubs** Discounts WoodPost Newsletter WoodWorks Software

www.constructionfiresafety.org

2018 NDS Changes - STD120

Free to Qualified Officials Fire Safety Manuals Links & Resources **Webinars** Checklists & Guidance Documents **Quarterly Newsletters**

CODE CONFORMING WOOD DESIGN (CCWD)

- Allowable building size
- Special occupancies
- Fire resistance
- Building features
- Wood in noncombustible construction types
- Structural considerations
- Precautions during construction

2018 NDS Changes - STD120

Free Download

WOOD JOIST AND RAFTER SPAN CALCULATOR

		_				
Species	Southern Pine 💌	•				
Size	2×10	•				
Grade	No. 2	-				
Member Type	Floor Joists 🛛 💌	-				
Deflection Limit	L/360 💌	•				
Spacing (in)	16	-				
	Wet service conditions?					
	Yes	1				
Exterior Exposure	Incised lumber?					
	No	•				
Live Load (psf)	40	-				
Dead Load (psf)	10	•				

2018 NDS Changes - STD120

- Simple spans (no cantilever)
- Uniform loads
- Wet service conditions
- Incising factor
- Free at www.awc.org

The Maximum Horizontal Span is:

15 ft. 10 in.

with a minimum bearing length of 0.93 in. required at each end of the member.

Property	Value
Species	Southern Pine
Grade	No. 2
Size	2x10
Modulus of Elasticity (E)	1440000 psi
Bending Strength (F _b)	1207.5 psi
Bearing Strength (F_{Φ})	378.55 psi
Shear Strength (F _v)	169.75 psi

2018 NDS Changes - STD120

2306 lbs. Adjusted ASD Capacity

Im

Is

IIIs IV

CONNECTION CALCULATOR

Design Method	Allowable Stress Design (ASD)	T
Connection Type	Lateral loading	•
Fastener Type	Bolt	•
Loading Scenario	Double Shear - Wood Main Member	۲

Main Member Type	Southern Pine 🔻
Main Member Thickness	1.5 in. 🔻
Main Member: Angle of Load to Grain	0
Side Member Type	Southern Pine 🔻
Side Member Thickness	1.5 in. 🔻
Side Member: Angle of Load to Grain	0
Fastener Diameter	1 in. 🔻
Load Duration Factor	C_D = 1.0 ▼
Wet Service Factor	C_M = 1.0 ▼
Temperature Factor	C_t = 1.0 ▼

Connection Yield Modes

2306 lbs.

4612 lbs.

4307 lbs.

6003 lbs.

Apps – free

HEIGHTS & AREAS CALCULATOR

2 Analysis Modes

- Basic
- Advanced

Analy	sis Mode
Basic An	alysis Mode is for four sided
buildings,	of a single occupancy type,
and havin	g the same area per floor.
Advance	d Analysis Mode provides for
mulitple o	ccupancies, more complex
building p	erimeters, and variable floor
areas. Ad	vanced Analysis assumes
separated	l occupancies (2006 IBC
508.3.3; 2	2009-15 IBC 508.4).
	OK

	Project						
?	Analysis Moo	de:					
	Ba	asic		A	dvai	nce	d
	Project Nam	e:					
						W	ebina
?	IBC Edition:						
·	2015	2	2012	2009	9	2	006
3	Type of Con	struct	ion:				
•			sel	ect type	of c	onst	ructio
	Sprinklers S	ystem	sele	ect type	of c	onst	ructio
?	Sprinklers Sy	/stem	sele :: NFP	ect type A 13	of co	onst FPA	13R
় ? ?	Sprinklers Sy None Building Heig	ystem ght:	sele NFP	ect type A 13	of co	onst F PA	13R
?	Sprinklers Sy None Building Heig	ysterr ght:	sele NFP	ect type A 13	of co	onst FPA	13R
?	Sprinklers Sy None Building Heig Stories abov	ystem ght: e gra	sele NFP de plane	ect type A 13	of co	PPA	13R 44

2018 NDS Changes - STD120

Apps – free

ENERGY UA CALCULATOR

			ENE	DCV I			ΑΤΟ					
AMERICAN WOOD COUNCIL												
Climate Information: Climate Zone: Zone 3	Stud Size	Spacing	Sheathing	Vinyl /steel / aluminum: uninsulated (hollow-back)	Vinyl /steel / aluminum: insulated (R2)	Vinyl /steel / aluminum: insulated (R3)	brick veneer: ³/4" air space	hardboard siding	plywood siding: edges - lapped	wood siding: drop - 8"	wood siding: bevel - 8", lapped	wood siding: bevel - 10", lapped
Req'd Wall U (Btu/ hr·ft²·°F):	2x4	16in	³/₅in OSB	R 22	R 17	R 14	R 19	R 22	R 22	R 21	R 21	R 20
Reg'd Fenestration II (Btu/ hr:ff2:°F):	2x6	16in	³/₅in OSB	R 16	R 13	R 12	R 15	R 16	R 16	R 16	R 16	R 15
		24in	³/₅in OSB	R 20	R 16	R 13	R 18	R 20	R 20	R 19	R 19	R 18
Design Parameters:	2x6	24in	³/₅in OSB	R 16	R 13	R 12	R 14	R 16	R 16	R 15	R 15	R 15
Percent Fenestration (%):	2x4	16in	¹/₂in SFB	R 20	R 15	R 13	R 17	R 19	R 20	R 19	R 19	R 18
Calculation Method:	2x6	16in	¹/₂in SFB	R 15	R 13	R 11	R 14	R 15	R 15	R 15	R 15	R 14
Calculated needed:	2x4	24in	¹/₂in SFB	R 18	R 14	R 12	R 16	R 18	R 18	R 17	R 17	R 17
Wall Fenestration	2x6	24in	¹/₂in SFB	R 15	R 12	R 11	R 14	R 15	R 15	R 14	R 14	R 14
Actual Wall U (Btu/ hr·ft²·°F):	2x4	16in	²⁵/₃₂in SFB	R 17	R 13	R 11	R 15	R 17	R 17	R 16	R 16	R 16
0.068	2x6	16in	²⁵/₃₂in SFB	R 14	R 11	R 10	R 12	R 13	R 14	R 13	R 13	R 13
Results:	2x4	24in	²⁵ / ₃₂ in SFB	R 16	R 13	R 11	R 14	R 16	R 16	R 15	R 15	R 15
0.3 Btu/ hr·ft ² ·°F	2x6	24in	²₅/₃₂in SFB	R 13	R 11	R 10	R 12	R 13	R 13	R 13	R 13	R 13

AWC FIELD STAFF

Dennis Richardson, P.E., C.B.O., CASp Western, Alaska (II), Hawaii (I) Regional Manager Email: drichardson@awc.org Phone: 707-538-2786

[Show Bio]

David P. Tyree, P.E., C.B.O Central Regional Manager Email: dtyree@awc.org Phone: 719-492-3990

[Show Bio]

Matthew Hunter, B.C.O., S.E.O Northeast Regional Manager Email: mhunter@awc.org Phone: 484-353-2509

[Show Bio]