International Code Council

ICC 300-2012 edition
Public comments received
On the 2007 edition of the ICC 300 Standard

For November 24, 2010
Meeting - Teleconference
2007 ICC 300 Standard Revision Proposals

IS-BLE1-10/11
ICC 300 Section 202 (New term)

Proponent: Greg Nelson, BR Bleachers, Co.

Add new text as follows:

SECTION 202
DEFINED TERMS

QUALIFIED PERSON: A professional trained in the proper and safe use, operation and repair of bleachers, folding and telescopic seating and grandstands and is knowledgeable in the requirements of this standard.

Reason: Gives understandable meaning to the “Qualified Persons” description in 501.2 Inspections

IS-BLE 2-10/11
ICC 300 Table 303.2

Proponent: Greg Nelson, BR Bleachers, Co.

Revise as follows:

TABLE 303.2 DESIGN LOADS

<table>
<thead>
<tr>
<th>TIERED SEATING ELEMENT</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats (vertical)</td>
<td>120 pounds per linear foot.</td>
</tr>
<tr>
<td>Horizontal sway loads</td>
<td>24 pounds per linear foot parallel to the seats and 10 pounds per linear foot perpendicular to the seats. These loads need not be assumed to act concurrently and need not be applied simultaneously with other lateral forces such as wind or seismic loads.</td>
</tr>
<tr>
<td>Treads</td>
<td>Stair treads and aisle stair treads shall be designed to resist a minimum concentrated load of 300 pounds on an area of 4 square inches.</td>
</tr>
<tr>
<td>Handrails and guards, uniform load</td>
<td>Handrail assemblies and guards shall be designed to resist a load of 50 pounds per linear foot (pound per foot) applied in any direction at the top. The</td>
</tr>
</tbody>
</table>
supporting elements shall transfer this load to the structure.

<table>
<thead>
<tr>
<th>Handrails and guards, concentrated load</th>
<th>Handrail assemblies and guards shall be able to resist a single concentrated load of 200 pounds, applied in any direction at any point along the top. Attachment devices and supporting elements shall transfer this load to the structure. This load need not be assumed to act concurrently with the uniform load.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guards, infill components</td>
<td>Intermediate rails (all those except the handrail), balusters, and panel fillers (including flexible infill components) shall be designed to withstand a horizontally applied normal load of 50 pounds on an area equal to 1 square foot, including openings and space between rails. Reactions due to this loading are not required to be superimposed with the uniform loads or concentrated loads. Application of the loads shall not allow guard openings greater than that permitted by Sections 408.2 and 503.2.</td>
</tr>
</tbody>
</table>

For SI: 1 square inch = 645.46 mm², 1 square foot = 0.0929 m², 1 pound = 4.448 N, 1 pound per linear foot = 14.594 N/m.

Reason: This expanded description addresses numerous instances in which flexible components have been used to close gaps over 4". They "open up" under loads, such as a small child leaning against a fence. Chain link fence installations that cover the entire row end but do not have supporting rail rungs attached at the bottom push out. Children can fall through or becoming trapped. Similar conditions in which cables or small infill rungs are used can also flex out under pressure and entrap heads or limbs.

IS-BLE3-10/11

ICC 300 Section 303.2, 303.4

Proponent: Daniel Victor, Interkal, LLC

1. **Revise as follows:**

303.2 Live Loads. Bleachers, folding and telescopic seating, and grandstands shall be designed for a uniform live load of 100 psf (4788 Pa). Press boxes shall be designed for a uniform live load of 50 psf (2394 Pa). The components of the installation shall be designed to support the loads listed in Table 303.2.

TABLE 303.2 DESIGN LOADS
<table>
<thead>
<tr>
<th>TIERED SEATING ELEMENT</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats (vertical)</td>
<td>120 pounds per linear foot.</td>
</tr>
<tr>
<td>Horizontal sway loads</td>
<td>24 pounds per linear foot parallel to the seats and 10 pounds per linear foot perpendicular to the seats. These loads need not be assumed to act concurrently and need not be applied simultaneously with other lateral forces such as wind or seismic loads.</td>
</tr>
<tr>
<td>Treads</td>
<td>Stair treads and aisle stair treads shall be designed to resist a minimum concentrated load of 300 pounds on an area of 4 square inches.</td>
</tr>
<tr>
<td>Handrails and guards, uniform load</td>
<td>Handrail assemblies and guards shall be designed to resist a load of 50 pounds per linear foot (pound per foot) applied in any direction at the top. The supporting elements shall transfer this load to the structure.</td>
</tr>
<tr>
<td>Handrails and guards, concentrated load</td>
<td>Handrail assemblies and guards shall be able to resist a single concentrated load of 200 pounds, applied in any direction at any point along the top. Attachment devices and supporting elements shall transfer this load to the structure. This load need not be assumed to act concurrently with the uniform load.</td>
</tr>
<tr>
<td>Guards, infill components</td>
<td>Intermediate rails (all those except the handrail), balusters, and panel fillers shall be designed to withstand a horizontally applied normal load of 50 pounds on an area equal to 1 square foot, including openings and space between rails. Reactions due to this loading are not required to be superimposed with the uniform loads or concentrated loads.</td>
</tr>
</tbody>
</table>

For SI: 1 square inch = 645.46 mm², 1 square foot = 0.0929 m², 1 pound = 4.448 N, 1 pound per linear foot = 14.594 N/m.

2. Delete and replace as follows:

303.4 Stress increases. Where Handrails and guards are designed in accordance with the provisions for allowable stress design (working stress design) exclusively for the loads specified in Section 303.2, allowable stress for the members and their attachments is permitted to be increased by one-third. Stresses permitted in the design standards of the various materials shall be permitted to be increased by one-third due to sway or wind loads or by a combination of sway or wind loads and vertical loads, provided that no such increases shall be allowed for stresses due to vertical loads alone. All other
allowable stress increases relative to the design of the installation shall be in accordance with the building code.

303.4 Horizontal Sway Loads. Bleachers, folding and telescopic seating and grandstands shall be designed to resist lateral forces produced by the sudden and concerted motion of spectators.

303.4.1 Sway Parallel to Seating. A horizontal load of 24 pounds per linear foot shall be applied parallel to seating at the footboard level of each row of seating.

303.4.2 Sway Perpendicular to Seating. A horizontal load of 10 pounds per linear foot shall be applied perpendicular to seating at the footboard level of each row of seating.

303.4.3 Load Cases including Horizontal Sway Loads. In addition to the load cases required to be considered for design in accordance with the building code, the additional load case in Section 303.4.4 or in Section 303.4.5 shall be considered. Parallel and perpendicular sway loads need not be considered simultaneously.

303.4.4 Load combination using strength design or load and resistance factor design. When using strength design or load and resistance factor the following additional load combination must be considered.

\[1.2D + 1.0L + 1.6Z \]
(Equation 3-1)

303.4.5 Load combination using allowable stress design. When using allowable stress design the following additional load combination must be considered.

\[D + 0.75L + 0.75Z \]
(Equation 3-2)

303.4.6 Notations of terms in load case equations. The following notations shall, for the purpose of this chapter, have the meanings shown herein.

- **D** = dead load as defined by the building code
- **L** = live load as defined by Section 303.2
- **Z** = horizontal sway loads as defined by Section 303.4.2 and Section 303.4.3

Reason: The proposed removes the stress increase provisions for handrail and guard design to match changes in the 2009 IBC where section 1607.7.1.3 of the 2006 IBC was deleted.

The proposed defines sway loading more completely and provides load cases for both LRFD and ASD design methods. Traditionally sway loading was handled similar to wind and earthquake loading. Older codes generally provided for the ASD method only and allowed a 1/3 stress increase for all materials in all load combinations which included wind or earthquake loads.

The proposed additional load cases represent 2009 IBC equations 16-4 and 16-13 with “W” being replaced by “Z”. Per the referenced document, “Stadium and Grandstand Design” AISC
1947, higher lateral forces were reported with fewer men on the test apparatus. Therefore, large dense crowds are not capable of producing full design lateral forces. The load combinations chosen reflect this fact and align well with older 1/3 stress increase philosophies.

Because the live load must be present to produce the lateral sway loads, other IBC load combinations which do include wind without the inclusion of live load such as equations 16-6 and 16-14 have not been included in this proposal.

Staff note: Code change S14-06/07 deleted Section 1607.7.1.3 because it was addressed in the unified ASD/LRFD material standard. The deleted section in IBC was

1607.7.1.3 Stress increase. Where handrails and guards are designed in accordance with the provisions for allowable stress design (working stress design) exclusively for the loads specified in Section 1607.7.1, the allowable stress for the members and their attachments are permitted to be increased by one-third.

Code change S84-09/10 has revised the load factors for wind from 1.6 to 1.0. See the attached information for the relative portions of the code change and reason.

IS-BLE 4-10/11

ICC 300 Section 309.1

Proponent: Gene Boecker, Code Consultants, Inc.

Revise as follows:

309.1 Fire Protection. Fire protection systems shall be provided where required by the building code.

Exception: An emergency voice/alarm communications system is not required for outdoor bleachers and grandstands provided all of the following are met:

1. The bleacher/grandstand has an occupant load of less than 15,000;
2. An public address system is provided;
3. Enclosed space located under seating are less than 1,000 square feet aggregate;
4. Enclosed space immediately adjacent to seating and not under the seating are limited to less than 3,000 square feet aggregate; and
5. All portions of the means of egress in the seating area are essentially open to the outside.

Reason: The requirement for a voice alarm system with emergency power is inappropriate for small open air venues such as high school grandstands. These facilities often have limited electrical power and no access to generators or other approved emergency power sources by virtue of their locations remote from the main school. Additionally, the regular use of a public address system is more than ample for notifying spectators of an emergency condition. The presence of an alarm system brings into question the means for activation. If there are no
sprinklers in an open air grandstand, then the activation method must be by manual (pull) stations. Placement of manual stations in a grandstand invites mischief and vandalism.

When the voice alarm provisions were included into the building codes, the provision was taken from the Uniform Fire Code (UFC) that had provisions for fire alarms for large occupant load facilities (Group A, Divisions, A, 2 and 2.1) but which delineated open air facilities as a separate division of assembly occupancies (Group A Division 4). Alarms were only required for the former and not the latter as late as the 1991 UFC. When the UFC was restructured from the 1991 edition to the 1994 edition, the information was moved to Chapter 10 of the UFC but still maintained the link between the when required (1007.2.2.1) and the system initiation (107.2.2.2) as well as the emergency power requirements (1007.2.2.3). This concept was continued with the 1997 UFC which introduced the 1000 occupant threshold for the voice alarm. The only intent was to introduce this threshold – not to expand the application to other Group A occupancies. Those using the UFC understood this and possessed the “corporate memory” to understand the intent.

When the provisions were adopted into the International codes, this linkage was lost and the “corporate memory” was lost to the new parts of the country. Thus, the fire alarm became required for all Group A (assembly) occupancies including the outdoor venues which had never had fire alarm requirements in the past. Since the introduction of the International Building Code (IBC) and International Fire Code (IFC) this has been an item that has been dealt with on a local level to varying degrees of success. Those jurisdictions with “corporate memory” acknowledge that the requirement makes little sense for small grandstands and bleacher arrangements. In the other two thirds of the country, this is applied without regard to history or rationale. It is in the code and therefore must be applied.

Prior to the IBC and IFC coming into existence, only the Standard Fire Prevention Code and Standard Building Code required fire alarms for all Group A occupancies. However, the practical applications and intent of that provision allowed for exceptions to be made on a local basis for small venues. Thus, smaller, open air venues regularly were constructed without any fire alarm in all of the three legacy codes.

The limitations included in the exception are intended to make sure that the smaller venues can be exempted from the voice alarm requirements while making sure that larger venues are provided with the necessary back-up to the public address system. The threshold of 15,000 was selected because is seems to be a number around which concourses below the grandstands begin to be used and relates to the threshold at which the aisle width used for outdoor facilities is provided with a different factor (Table 404.5(3)). Using a common factor reduces the likelihood of erroneous application of the standards provisions. Where individual enclosed areas exceed 1,000 square feet, sprinklers are required for those areas according to the building code. Thus, an activation method exists for fire alarm and voice alarm initiation. The limitation of 3,000 square feet for areas away from below seating allows for larger spaces but requires that they be located away from seating. The final item in the exception list assures that even if the circulation areas outside the grandstands are unconditioned, if they could limit the ability of smoke to dissipate by virtue of sides and roof, they cannot be used. A portion of the language was taken from that used to describe the free ventilation for pedestrian bridges; more restrictive than what is required for open parking garages.

This exception sets a threshold for something that has been variously allowed to exist or strictly disapproved. The fact that the provision has been applied inconsistently is a clear indication that some adjustment must be made. The proposal sets reasonable limits on the voice alarm threshold.

Staff note: See attachment with code changes E142-09/10 which added Section 1028.1.1 to the 2012 IBC. Most spaces under seating are now required to be separated.
IS-BLE 5-10/11
ICC 300 Section 404.5, 404.5.1 (New), 405.5

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

405.5 Uniform width. Those portions of aisles, where egress is possible in either of two directions, shall be uniform in required width and shall be measured in accordance with Section 404.5.1.

404.5 Required width. The clear width of aisles and other means of egress for indoor smoke-protected assembly seating shall not be less than the occupant load served by the egress elements multiplied by the appropriate factor in Table 404.5(1). The clear width of aisles and other means of egress for indoor assembly seating that is not smoke protected shall not be less than the occupant load served by the egress elements multiplied by the appropriate factor in Table 404.5(2). The clear width of aisles and other means of egress for outdoor smoke-protected assembly seating not be less than the occupant load served by the egress elements multiplied by the appropriate factor in Table 404.5(3). The total number of seats specified shall be those within the space exposed to the same environment. Aisles shall also comply with Section 405.

404.5.1 Measurement. The clear width of aisles and other means of egress shall be measured to walls, edges of seating and tread edges except for permitted projections. There shall be no obstructions in the required width of aisles except for handrails as provided in Section 409.7.

Reason: The required width is normally considered to vary with the number of occupants passing a particular point along the aisle within the catchment area. I believe this clarifies the intent. Revisions to Section 404.5 will help narrow down the reference.

IS-BLE 6-10/11
ICC 300 Section 405.6

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

405.6 Dead ends. The length of a dead-end aisle shall not exceed 16 rows in nonsmoke-protected assembly seating and 21 rows in smoke-protected assembly seating.

Exceptions: Dead-end aisles terminating at a cross aisle or vomitory providing access to an exit at only one end and complying with any one of the following shall be permitted.

ICC 300 – Agenda Book for November 2010 Meeting
October 2010
1. In nonsmoke-protected assembly seating, dead-end aisles exceeding 16 rows are permitted where seats beyond the 16th row are no more than 24 seats from another aisle, measured along a row of seats having an aisle accessway with a minimum clear width of 12 inches (305 mm) plus 0.6 inch (15.2 mm) for every additional seat beyond seven where seats have backrests or beyond ten where seats are without backrests in the row.

2. For smoke-protected seating, dead-end aisles exceeding 21 rows are permitted where seats beyond the 21st row are no more than 40 seats from another aisle, measured along a row of seats having an aisle accessway with a minimum clear width of 12 inches (305 mm) plus 0.3 inch (7.6 mm) for each additional seat beyond seven where seats have backrests or beyond ten where seats are without backrests in the row.

Reason: I believe this proposal clarifies the intent. This will coordinate with the proposed revisions to Section 407. See the reason statements for those proposals.

IS-BLE 7-10/11
ICC 300 Section 407.2

Proponent: Brian Boudreau, Hussey Seating Company

Revise as follows:

407.2 Minimum width. Where seating rows have 14 or fewer seats, the minimum clear aisle accessway width shall not be less than 12 inches (305 mm) measured as the clear horizontal distance from the back of the row ahead and the nearest projection of the row behind. Where chairs have automatic or self-rising seats, the measurement shall be made with seats in the raised position. Where any seat in a row does not have an automatic or self-rising seat, the measurements shall be made with the seat in the down position. For seats with folding tablet arms, row spacing shall be determined with the tablet arm **down in the use position**.

Exception: For seats with folding tablet arms, row spacing is permitted to be determined with the tablet arm in the stored position where the tablet arm when raised manually to a vertical position in one motion automatically returns to the stored position by force of gravity.

Reason: Promote consistency in text between section 1028.10 in IBC 2009 and section 407.2 in ICC 300 2007.

The term “down” for the position of the tablet arm lacks clarity. A tablet arm has two positions – stored and use positions. The 2007 Supplement to IBC addressed this lack of clarity and removed the term “down” and replaced it with “in the use position”. The exception noted above was also added to the 2007 Supplement to provide additional clarity.

ICC 300 – Agenda Book for November 2010 Meeting

October 2010
Staff note: Section 1028.10 was revised by E158-06/07. See attachment for code change history

IS-BLE 8-10/11
ICC 300 Section 407.3

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

407.3 Dual access. For rows of seating served by aisles or doorways at both ends, there shall not be more than 100 seats per row. The minimum clear width of 12 inches (305 mm) between rows shall be increased by 0.3 inch (7.6 mm) for every additional seat beyond 14 where seats have backrests or beyond 21 where seats are without backrests. The minimum clear width is not required to exceed 22 inches (559 mm).

Exceptions:
1. For smoke-protected assembly seating, the row length limits for a 12-inch-wide (305 mm) aisle accessway, beyond which the aisle accessway minimum clear width shall be increased in accordance with Section 407.5.
2. Where seats are without backrests, 21 seats between aisles shall be permitted with a minimum clear width of 12 inches (305 mm).

Reason: The question is dealing with Exception 1. Is the 21 maximum number of seats in a row without backrests or does 21 replace 14 (as shown in Table 407.5) to which additional seats can be added to the 21 seats by using the formula for additional seats when there is a wider aisle accessway beyond 12 inches? The same question is also for Section 407.4, Exception 2, only the numbers are 10 and 7.

I believe that the intent of the exceptions for seats without backs is to allow the replacement of an increased number of seats before the access aisle is required to exceed 12 inches. Once the increased number is exceeded in a dual access or single access row, the calculation for the increased access aisle width would start at this point. Example of dual access:

Seats with backs – 30 seats; 30 – 14 = 16; 16 x 0.3” + 12” = 16.8” minimum access aisle width
Seats without backs – 30 seats; 30 – 21 = 7; 7 x 0.3” + 12” = 14.1” minimum access aisle width

This is in recognition that when exiting, persons are not necessarily regulated to the access aisle they started in by the seat configuration. In bench style bleachers, people could travel across rows.

While not specifically stated in Section 407.5, I do believe that it is the intent of the 14 seats and 7 seats in the row titled, 'Less than 4,000 seats' to allow those numbers to be replaced with 21 and 10 when the seats do not have backs. This is in recognition of the increased exiting time allowed in outdoor or smoke-protected seating areas. If the seat numbers in the following rows should be increased at a greater rate than indicated is not information currently addressed in the ICC 300. A conservative approach would be to increase the access aisle width in the same increments as permitted in the table.
IS-BLE 9-10/11
ICC 300 Section 407.4

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

407.4 Single access. For rows of seating served by aisles or doorways at only one end of the row, the minimum clear width of 12 inches (305 mm) between rows shall be increased by 0.6 inch (15.2 mm) for every additional seat beyond seven seats where seats have backrests or beyond ten where seats are without backrests. The minimum clear width is not required to exceed 22 inches (559 mm). The path of egress travel, however, shall not exceed 30 feet (9144 mm) from any seat to a point where a person has a choice of two paths of egress travel to two exits. Where one of the two paths of travel is across the aisle through a row of seats to another aisle, there shall not be more than 24 seats between the two aisles; and the minimum clear width between rows for the row between the two aisles shall be 12 inches (305 mm) plus 0.6 inch (15.2 mm) for each additional seat above seven in the row between aisles.

Exceptions:
1. For smoke-protected assembly seating, the row length limits for a 12-inch-wide (305 mm) aisle accessway, beyond which the aisle accessway minimum clear width shall be increased, are in Table 407.5.
2. Where seats are without backrests, a maximum of 10 seats to an aisle shall be permitted with a minimum clear width of 12 inches (305 mm).
3. In smoke-protected assembly seating, the path of egress travel shall not exceed 50 feet (15 240 mm) from any seat to a point where a person has a choice of two paths of egress travel to two exits.

Reason: I believe this clarifies the intent. See the reason for the proposal to Section 407.3.

IS-BLE 10-10/11
ICC 300 Table 407.5

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

407.5 Smoke-protected aisle accessways. The design of smoke-protected aisle accessways shall comply with Table 407.5.
TABLE 407.5
SMOKE-PROTECTED AISLE ACCESSWAYS

<table>
<thead>
<tr>
<th>TOTAL NUMBER OF SEATS IN THE SMOKE PROTECTED ASSEMBLY OCCUPANCY</th>
<th>MAXIMUM NUMBER OF SEATS PER ROW PERMITTED TO HAVE A MINIMUM 12-INCH CLEAR WIDTH AISLE ACCESSWAY</th>
<th>Aisle or doorway at both ends of row</th>
<th>Aisle or doorway at one end of row only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seats with backrests</td>
<td>Seats without backrests</td>
<td>Seats with backrests</td>
</tr>
<tr>
<td>Less than 4,000</td>
<td>14</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>4,000</td>
<td>15</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>7,000</td>
<td>16</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>10,000</td>
<td>17</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>13,000</td>
<td>18</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>16,000</td>
<td>19</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>19,000</td>
<td>20</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>22,000 and greater</td>
<td>21</td>
<td>28</td>
<td>11</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

Reason: This proposal is an extension of the recognition of the fact that bench seating without backrests allows easier and quicker lateral movement along a bleacher row as compared with rows of seat which are provided with backrests (ref. ICC 300 Section 407.3 Exception 2.)

IS-BLE 11-10/11
ICC 300 Section 409.5.1

Proponent: Daniel Victor, Interkal, LLC

Revise as follows:

409.5.1 Mid-aisle handrail termination. Mid-aisle handrails shall not extend beyond the lowest riser and shall terminate within 30 inches (762mm) 18 inches (381mm) measured horizontally, from the face of the lowest riser.

Exception: Mid-aisle handrails shall be permitted to extend beyond the lowest riser where the handrail extensions do not obstruct the required width of the cross aisle.

Reason: In some instances, such as where there is no cross-aisle at the bottom of the aisle, it is desirable to extend the handrail beyond the first riser similar to requirements for stairways in buildings (ref. 2009 IBC 1012.6). The proposed revision allows, but does not require the extension.

Assuming decent of the aisle, it is necessary to reach backward to keep a hand on the rail while stepping off the bleacher. Section 409.1.1 allows a maximum 36 inch gap between handrails. At the mid-point between, an occupant would be required to reach either forward or
backward 18 inches. 30 inches is recognized as an allowable reach sideways, but may not be appropriate as a rearward reach limit.

IS-BLE 12-10/11
ICC 300 Section 502.2.1(New)

Proponent: Greg Nelson, BR Bleachers, Co.

Add new text as follows:

502.2.1 Repairs required. Where occupancy or operation of the seating system is found to be unsafe, the seating shall not be used, (in whole or in part) or operated until complete repairs restoring safe use are completed.

Reason: Specifies that owners may not use or operate any part of defective or damaged seating until proper repairs are made, regardless of when the last annual inspections were conducted. Facilities have used defective seating when severe damage has been reported. They instruct spectators to avoid the defective area and cite the fact that the annual inspections were recently completed, in defense of their instructions. This recommendation includes requirements that unsafe conditions are promptly reported.

IS-BLE 13-10/11
ICC 300 Section 503.1, 503.1.1(New)

Proponent: Greg Nelson, BR Bleachers, Co.

Revise as follows:

503.1 Required guards. Guards shall be provided in the following areas.

1. Along open-sided walking surfaces, cross aisles, stepped aisles, ramps and landings of tiered seating areas which are located more than 30 inches (762 mm) above the floor or grade below. Such guards shall be not less than 36 inches (914 mm) high, measured vertically above the leading edge of the tread, adjacent walking surface or center of adjacent bench seat.

Exceptions:

1. Where the upper most seat is located less than or equal to 55 inches (1397 mm) above the floor or ground below.
2. Where located adjacent to a wall and the space between the wall and the tiered seating is less than 4 inches (102 mm).

2. Unless subject to the requirements of Item 3, a guard with a minimum
height of 26 inches (660 mm) shall be provided where the floor or footboard elevation is more than 30 inches (762 mm) above the floor or grade below and the guard would otherwise interfere with the sightlines of immediately adjacent seating.

2.3 A guard shall be provided for the full width of the aisle where the foot of the aisle is more than 30 inches (762 mm) above the floor or ground below. The guard shall be a minimum of 36 inches (914 mm) high.

503.1.1 Guard height. Existing guards shall be a minimum of 36 inches (914 mm) high, measured vertically above the leading edge of the tread, adjacent walking surface or center of adjacent bench seat. Guards that are replaced shall not be less than 42 inches (1067 mm) high, measured vertically above the leading edge of the tread, adjacent walking surface or center of adjacent bench seat.

Exception: Unless subject to Section 503.1, Item 2, a guard with a minimum height of 26 inches (660 mm) shall be provided where the guard would otherwise interfere with the sightlines of immediately adjacent seating.

Reason: Adds replacement requirement to meet current new standards. This is a minor concession since most rail systems are designed to meet the 42 inch height and will improve safety on existing seating.

IS-BLE 14-10/11
ICC 300 Section 505 (New)

Proponent: Greg Nelson, BR Bleachers, Co.

Add new text as follows:

SECTION 505
EGRESS

505.1 Egress. Existing tiered seating shall comply with the egress requirements in Sections 401 through 407 and 409.

Exceptions:
1. Where the uppermost seat board is located 55 inches (1397 mm) or less above the floor or ground below the bleacher is not required to comply with Sections 405, 406, 407 or 409;
2. Where a bleacher has an occupant load of 100 or less, the bleacher is not required to comply with Sections 405, 406, 407 or 409; or
3. Where modifying an existing seating structure to meet the aisle stair requirements in Section 406 would be technically infeasible.
Reason: Clarifies rules for egress on existing seating and follows the basic existing seating standards already established without requiring new replacement of existing seating when meeting this standard would be impractical. Provides small stand (100 or < seat capacity) owners with an exception. Currently numerous schools question what is required and by what standard.

IS-BLE 15-10/11
ICC 300 Section 505 (New)

Proponent: Greg Nelson, BR Bleachers, Co.

Add new text as follows:

SECTION 505
SEATING RELOCATION

Section 505.1 Relocating existing bleachers. Relocating existing bleachers to a new location shall be permitted provided the existing bleacher complies with Sections 303.6, 304, 306, 307, 308 and 310 and Chapter 5.

Exception: Compliance with Section 310 is not required when technically infeasible.

Reason: Allows the re-use or relocation (due to floor replacement or gym layout redesign) of an existing seating system that can meets the same requirements as a seating system currently in place. This makes the standards for reusing existing seating clearer. Many owners ask if this is allowed and by what rules. It is assumed that the bleacher was designed for compliant loading. Sections 305, 309 and 311 are addressed in Chapter 5. Section 310, Accessibility, is required when the alteration would require movement of major structural elements for the bleacher.