

COPYRIGHT © 2024 by INTERNATIONAL CODE COUNCIL, INC.

This presentation is copyrighted work owned by the International Code Council, Inc. ("ICC"). Without advanced written permission from the ICC, no part of this presentation may be reproduced, distributed, or transmitted in any form or by any means, including, without limitation, electronic, optical or mechanical means.

For information on use rights, permissions, or licensing, please contact ICC Training at 4051 Flossmoor Road, Country Club Hills, IL 60478 or via email: Learn@ICCSAFE.org.

Images from private sources, Shutterstock, and Getty Images used under license or permission.

3

International Code Council is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request. This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><section-header><image><image><image><image><image><image><image><image><image><image><image><image>

21

	Load Combinations – LRFD/Strength Design (SD)
	1.4D(Eq 1a) $1.2D + 1.6L + (0.5L_r \text{ or } 0.3 \text{S or } 0.5\text{R})$ (Eq 2a) $1.2D + (1.6L_r \text{ or } 1.0 \text{S or } 1.6\text{R}) + (L \text{ or } 0.5\text{W})$ (Eq 3a) $1.2D + 1.0(W \text{ or } W_T) + L + (0.5L_r \text{ or } 0.3 \text{S or } 0.5\text{R})$ (Eq 4a) $0.9D + 1.0(W \text{ or } W_T)$ (Eq 5a)
)	1.2D + E_v + E_h + L + <u>0.15</u> S (Eq 6) 0.9D - E_v + E_h (Eq 7)
2	IBC § 1605 ASCE 7 § 2.3

	Load Combinations – ASD	
DDE CHANGE	D D + L D + (L _r or <u>0.7</u> S or R) D + 0.75L + 0.75(L _r or <u>0.7</u> S or R) D + 0.6(W <u>or W_T</u>) D + 0.75L + 0.75(0.6(W <u>or W_T</u>)) + 0.75(L _r or <u>0.7</u> S or R) 0.6D + 0.6(W <u>or W_T</u>)	(Eq 1a) (Eq 2a) (Eq 3a) (Eq 4a) (Eq 5a) (Eq 6a) (Eq 7a)
Ŭ	D + 0.7E _v + 0.7E _h D + 0.525E _v + 0.525E _h + 0.75L + <u>0.1</u> S 0.6D - 0.7E _v + 0.7E _h	(Eq 8) (Eq 9) (Eq 10)
63	IBC § 1605 ASCE 7 § 2.4	

D L L (L, or $0.7S$ or R) (Eq 16-1) D L L (Eq 16-2) L D L L 0.7S/2 (Eq 16-3) D L L 0.7S + 0.6W/2 (Eq 16-4) D L L 0.7S + E/1.4 (Eq 16-5) 0.9D + E/1.4 (Eq 16-6) - • Where design for tornado loads is required, the alternative allowable stress design load combinations of Section 1605.2 shall not apply when tornado loads govern the design. 10 HE \$ 1605.1 Exception 4 -		Load Combinations – Alternative ASD
 Where design for tornado loads is required, the alternative allowable stress design load combinations of Section 1605.2 shall not apply when tornado loads govern the design. IBC § 1605.2 & 1605.1 Exception 4 	JE CHANGE	D + L + (L _r or 0.7 S or R) (Eq 16-1) D + L + 0.6W (Eq 16-2) D + L + 0.6W + 0.7 S/2 (Eq 16-3) D + L + 0.7 S + $0.6W/2$ (Eq 16-4) D + L + 0.7 S + $E/1.4$ (Eq 16-5) 0.9D + E/1.4 (Eq 16-6)
& 160-5 105.12 Exception 4	COD	 Where design for tornado loads is required, the alternative allowable stress design load combinations of Section 1605.2 shall not apply when tornado loads govern the design.
	04	& 1605.1 Exception 4

CODE CHANGE

83

2024 IBC Risk Categories CODE CHANGE Photovoltaic (PV) panel Systems Risk Category (RC) PV Systems & Elevated PV Support ш ш IV 1 Ground mounted for Group R-3 only 2 Ground mounted other than 1 & 5 3 Elevated other than 4.5 & 6 4 Rooftop and elevated PV on top of buildings Same as building RC 5 Paired with ESS & dedicated backup for RC IV building 6 Elevated & used for emergency vehicle parking 82 IBC § 1604.5.2

Importance Factor Risk Category Snow Ice – Thickness Ice - Wind Seismic rom Table 1.5-1 0.80 0.80 1.00 1.00 1.00 1.00 1.00 1.00 Ш ш 1.10 1.15 1.00 1.25 1.20 1.25 1.00 1.50 IV • Importance factors eliminated for snow and ice since values are now provided for each risk category • Seismic system reliabilities are different from those for other environmental hazards ASCE 7-22 Table 1.5-2

Copyright © 2024 International Code Council

Live Loads			
Subject	2024 IBC	2021 IBC	Changes
Uniform	1607.3	1607.3	Reorg
Partial Loading of Floors	1607.3.1	1607.13	Reorg
Partial Loading of Roofs	1607.3.2	1607.14	Reorg
Partitions	1607.5	1607.5	Reorg and ASCE 7-22
Helipads	1607.6	1607.6	Reorg and revise
Heavy Vehicle	1607.8	1607.8	Emergency vehicles
Handrails and Guards	1607.9	1607.9	ASCE 7-22
Fixed Ladders	1607.10	1607.17	Renumbered
Vehicle Barriers	1607.11	1607.10	Renumbered
Impact	1607.12	1607.11	Renumbered
Reduction Uniform LL	1607.13	1607.12	Renumbered
Alternate ULL Reduction	1607.13.2	1607.12.2	Reorg

	Liv	ve Loads			
2		Subject	2024 IBC	2021 IBC	Changes
		Reduction Uniform RLL	1607.14	1607.14.2	Reorg
		Occupiable Roofs	1607.14.2	1607.14.2.2	Reorg
5		Awnings and Canopies	Deleted	1607.14.3	Covered elsewhere
		Photovoltaic Systems	1607.14.3	1607.14.4	Reorg
		Crane	1607.15	1607.15	ASCE 7-22
		Library Stack Rooms	1607.17	1607.18	Renumbered
		Assembly Seating	1607.18	1607.19	Renumbered
		Sidewalks/Driveways – Trucks	1607.19	1607.20	Renumbered
		Stair Treads	1607.20	1607.21	Renumbered
3		Residential Attics	1607.21	1607.22	Renumbered
2					

Storra 2x10 REQUIRED 12 FEET 2x6 REQUIRED 12 FEET 2x6 REQUIRED 12 FEET 2x6 REQUIRED 12 FEET 2x6 REQUIRED 12 FEET

Copyright © 2024 International Code Council

other uniform live loads.

section §4.10.4 Operating loads

Consistent with ASCE 7-22 new

Wheel and outrigger reactions

• Outriggers up to 60,000 lb

Fire Trucks and Emergency Vehicles

Emergency vehicle loads need not be assumed to act concurrently with

harking-garage-collapsed-20190806-bt42ai7z2jhjzcjrtrwe7vrsb4-storv.ht

30

33

38

CODE CHANGE

Rain Loads

- Intensity based on 15-min duration storms for secondary drains
- Return period based on Risk Category
- Ponding provisions updated consistent with ASCE 7-22

40

42

1611

Design Rain Load

greater than the 15-minute duration storm with return period given in Table 1611.1. Rainfall intensity shall be determined in inches per hour for 15-minute duration storms for Risk Category given in Table 1611.1. The design rainfall shall be based on the 100-year 15-minute duration event, or on other rainfall rates determined from approved local weather data. Alternatively, a design rainfall of twice the 100-year hourly rainfall rate indicated in Figures 1611.1(1) through 1611.1(5) shall be permitted. The ponding head shall be based on structural analysis as the depth of water due to deflections of the roof subjected to unfactored rain load and unfactored dead load.

- Consistent with ASCE 7-22 § 8.2
 Ponding head added
- Primary drain typically designed for 1-hour duration
- Secondary drain must be designed for 15-minute duration
 Option for 2x hourly rate deleted

Adapted from Structural Load Determination: 2024 IBC and ASCE/SEI 7-22 - McGraw Hill

41

CODE CHANGE

+ IBC

Rain Loads

Secondary drainage system for structural loading (SDSL)

- Roof drainage system through which water is drained when primary drainage system blocked
- SDSL ≥ 2" above primary drain

44

24 IBC

CODE CHANGE

Po	ondiı	ng Instability Supplemental Data R	equest	
Reference	ce*	Ponding Instability Parameters (IBC 1611.2)	Data	
ASCE 7 §	8.3	Roof slope < ¼" per foot? If yes, additional investigation required	No	
ASCE 7 E	q C8.3-2	Secondary members parallel to free-draining edge?		
		Secondary member span, L _s (ft)	35	
		Secondary member spacing, S (ft)	5	
		Specified slope, β (in./ft)		
		Calculated slope comparison (in./ft)	0.51	
		If β < calculated value, then additional investigation required	Yes	
ASCE 7 E	q C8.3-1	Secondary members perpendicular to free-draining edge?		
		Secondary member span, L _s (ft)		
		Primary member span, L _p (ft)		
		Specified slope, β (in./ft)		
		Calculated slope comparison (in./ft)		
		If β < calculated value, then additional investigation required		
*IBC 2024	4 and ASCE	7-22	a merel and a feature of the	

65

Definitions

GROUND SNOW LOAD GEODATABASE. The ASCE database (version 2022-1.0) of geocoded values of risk-targeted design ground snow load values.

GROUND SNOW LOAD, pg. Design ground snow loads.

GROUND SNOW LOAD, p_{g(asd)}. Allowable stress design ground snow loads.

Added for consistency with ASCE 7-22

- Design GSL is strength-based
- Conversion to ASD GSL as needed

13

12

CODE CHANGE

24 IBC

CODE CHANGE

14

16

CONSTRUCTION	L or L,	Clauted.	
Pool members!		3. pr w	D+L*
Nour memoria.			
Supporting plaster or stucco ceiling	//360	//360	1/240
Supporting nonplaster ceiling	//240	//240	1/180
Not supporting ceiling	//180	//180	1/120
accordance with Section 1608.1 for the	he purpose of determining	g deflection limits in	Table 1604

	Load Combinations – ASD	
CHANGE	D + (L _r or <mark>0.75</mark> or R) D + 0.75L + 0.75(L _r or <mark>0.75</mark> or R) D + 0.75L + 0.75(0.6(W <u>or W_T)</u>) + 0.75(L _r or <mark>0.75</mark> or R)	(Eq 3a) (Eq 4a) (Eq 6a)
CODE	D + 0.525E _v + 0.525E _h + 0.75L + <mark>0.1</mark> S Exceptions:	(Eq 9)
§ 1605.1	 Where the allowable stress design load combinations of AS are used, flat roof snow <i>loads</i> of 30 45 pounds per square 	SCE 7 Section 2.4 foot or less and

are used, flat roof snow *loads* of <u>30 45</u> pounds per square foot or less and *roof live loads* of 30 pounds per square foot or less need not be combined with seismic loads. Where flat roof snow loads exceed <u>30 45</u> pounds per square foot, <u>20 15</u> percent shall be combined with seismic loads.

18

	Load Combinations – Alternative ASD
DE CHANGE	D + L + (L _r or $0.7S$ or R) (Eq 16-1) D + L + 0.6W + $0.7S$ /2 (Eq 16-3) D + L + $0.7S$ + 0.6W/2 (Eq 16-4) D + L + $0.7S$ + E/1.4 (Eq 16-5)
0	Exceptions:
505.2 IBC	 Flat roof snow <i>loads</i> of 30 45 pounds per square foot or less and <i>roof</i> <i>live loads</i> of 30 pounds per square foot or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 45 pounds per square foot, 20 15 percent shall be combined with seismic loads.

	Metal
	Slate
Slippery roof surfaces	Glass
	Bituminous membranes*
	Rubber membranes*
	Plastic membranes*
	Asphalt shingles
Not slippery roof surfaces	Wood shingles
	Shakes
*Slippery = smooth. Membranes with en	nbedded aggregate or mineral granule surface ≠ smooth

53

AS	CE 7 HAZARI	о то	DL		1 	an Geerrap 1
	5	Snow D	letails		× C	
Location Fort Call	n Colemba	Count S	incom Lowel, page	2月10日		
Parton		*. Allowable	Streen Groups Ground Snew Li	wite, p _{gint} 27.3 to ^{th)}	N.V.	
Deution	4994 R with respect to North American Vertical Datum of 1998 (NAVD 38)	20 year h	HI Value, by	11.55 lb/th ²	have to	
Le.	40.58147	Worker W	ind Parametari, Wy	0.40	A LA	
Long	-105.07642	Mapped	Bevation	4904.0 ft	2	Que Collins
Darderi	ASGE/SE) 7-22	Data Sou	te .	ASCE/SEI 7-22, Figures 7.6-1 and 7.6-2.4-0	1880	Controlation
Risk Category	1	Values pr variations represent	ovided are ground snow loads. It is ground snow loads preclude the upper elevation limits in fer	n areas designated "case study required," extreme local mapping at this scale. Numbers in parentheses It for the ground snow load values presented. She-		-
Sol Car	c Default During Carrier	Source for Interest	are states are required to esta divalues are mapped to a 0.6 m the mapped elevation and the o schould consult the local author	oran ground brow toess an elevations not covered. In resolution. This resolution can create a mematch to specific elevation in locations where the reported its having paradiction in locations where the reported		

Snow Load Supplemental Data Request

	Reference	s* Snow Load Parameters (IBC 1608.1)	D	ata
	IBC 1604.5	Building Risk Category: I, II, III, IV		I
	IBC 1608.2	Ground snow load, p_q (psf)	3	9.0
	ASCE 7 §7.3	.1 Roof exposure factor, Ce: B, C, D and Roof Exposure	1	.2
4	ASCE 7 §7.3	.2 Roof thermal condition, C _t	1	19
	ASCE 7 §7.3	Flat roof snow load, p_f (psf)	3	9.0
	ASCE 7 §7.3	.3 Minimum snow load for low-slope roofs, p _m (psf)	30.0 39.0	
2	ASCE 7 §7.4	Sloped roof snow load, p _s (psf)		
₫	ASCE 7 §7.5	Partial snow loading: gable roof slope < ½ /12	n	/a
\mathbf{x}	ASCE 7 §7.6	Unbalanced roof snow loads (psf): windward, leeward	11.7	19.5
n –		Leeward rectangular surcharge distance from ridge (ft)	2).5
	ASCE 7 §7.7	.1 Drifts on lower roofs: Y N		Y
	ASCE 7 §7.8	Drifts adjacent to roof projections and parapets: Y N		N
	ASCE 7 §7.9	Sliding snow: roof slope and surface roughness	7.6°	S
	ASCE 7 §7.1	0 Rain-on-snow surcharge load (psf)	n/a	
	ASCE 7 §7.1	1 Ponding analysis required: Y N		Y
	ASCE 7 §7.1	2 Snow loads on existing roofs: Y N		N
	ASCE 7 §7.1	3 Snow loads on open-frame equipment structures: Y N		N
52	*IBC 2024 a	d ASCE 7-22		

	Definitions and Symbols
t	ATMOSPHERIC ICE GEODATABASE: The ASCE database (version 2022-1.0) o geocoded nominal ice thickness, concurrent wind, and concurrent temperature data.
	= Nominal ice thickness on a cylinder caused by freezing rain at a height of 33 ft, from Figures 10.4-2 through 10.4-6 <u>10.4-5</u> , for the applicable risk <u>ategory</u> , in.
•	ASCE Hazard tool provides values (asce7hazardtool.online) Based on risk category
	Free resource

Design Process for Atmospheric Ice Loads

71

 $V_i = \frac{\pi t_d}{12} A_s \quad (\text{ft}^3)$

72

84

	ASCE 7 HAZARI	D TOOL	Name and a state and a state a
EXAMPLE	Landmin Gene Factors, Kulturye, Donator, 1518 - Handrey Kulturye, Let el 1546 - Let 1540 - Let 40400 HB) Let el 1546 - Let 40400 HB) Let el 1546 - Let 40400 HB) Let el 1546 - Let 40400 HB) Sanctes - A0400 HB) Kator Bandrey - Let 4040 HB) Kator Bandrey - Let 4040 HB) Kator Bandrey - Let 4040 HB)	Ace Details Thickness E R m Since and things the set of the set	And For Contract of Contract o
85	E for in, BYSALS	Earlbrack, Gor HORE Gumm, Kort, Mark	n usan kan CEM

	Atmosphe	ric Ice Loads Supplemental Da	ta Request	
	References*	Atmospheric Ice Load Parameters (IBC 1614.1)	Data	
ш	IBC 1604.5	Risk Category: I, II, III, IV	II	
	asce7hazardtool.online	Nominal ice thickness (in.), t	0.96	
<u> </u>	asce7hazardtool.online	Concurrent temperature, °F	5	
5	ASCE 7 §10.4.3	Height factor, f_{z}	0.97	
4	ASCE 7 §10.4.4	Topographic factor, K _{zt}	1.0	
\mathbf{x}	ASCE 7 §10.4.5	Design ice thickness (in.), t_d	0.93	
ΞÛ]		Ice load, D _i , based on glaze ice (plf)		
	ASCE 7 §10.4.1	Area: $D_i = A_i \times \text{density}$	683	
	ASCE 7 §10.4.1	Volume: $D_i = V_i x$ density		
	*IBC 2024 and ASCE 7-	22		
86				
			a restaurant data has	

	Wind on Ice Loads Supplemental Data Requ					
	Defense at		Data			
	References*	wind on ice Load Parameters	Data			
XAMPLE	ASCE 7 §10.5	Concurrent gust speed, V _c (mph)	47			
	ASCE 7 §26.6	Wind directionality factor, K _d	1.0			
	ASCE 7 §26.11	Structure's fundamental natural frequency, n_1 , and corresponding gust-effect factor, G	>1 0.85			
	ASCE 7 Eq 26.10-1	Wind velocity pressure, q_z or q_b (psf)	3.2			
	· ·	Wind force coefficients and wind-on-ice load (Ib)	$C_f W_i$			
	ASCE 7 §10.5.1 & Eq 29.4-1	Chimneys, tanks and similar: $W_i = q_z K_d G C_f A_f$	0.7 2395			
ш	ASCE 7 §10.5.2 & Eq 29.3-1	Solid freestanding walls and signs: $W_i = q_b K_d G C_f A_s$				
	ASCE 7 §10.5.3 & Eq 29.4-1	Open signs and lattice frameworks: $W_i = q_r K_d G C_f A_f$				
	ASCE 7 §10.5.4 & Eq 29.4-1	Trusses towers: $W_i = q_z K_d G C_f A_f$				
	ASCE 7 §10.5.5 & Eq 29.4-1	Guys and cables: $W_i = q_z K_d G C_f A_f$				
	*IBC 2024 and ASCE 7-22	$q_z = 0.00256 \ K_z \ K_{zt} \ K_e \ V_c^2 \qquad (26.10-1)$				

Copyright © 2024 International Code Council

