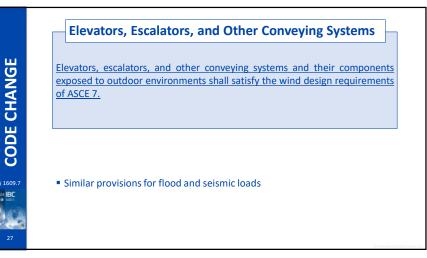
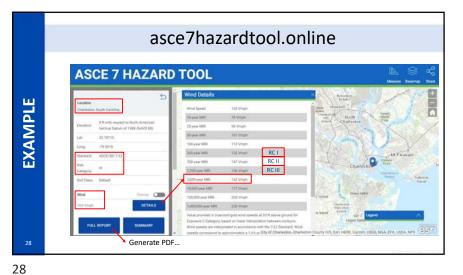
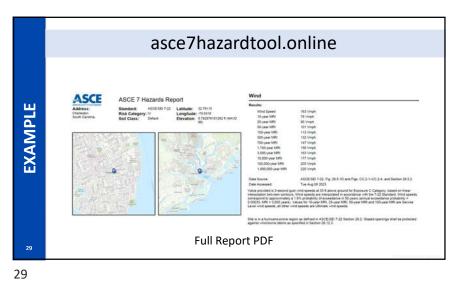
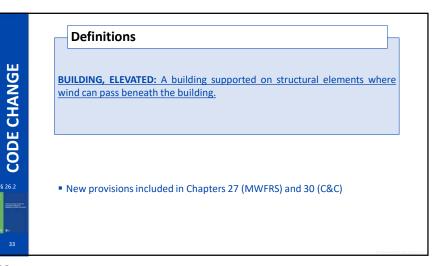


20



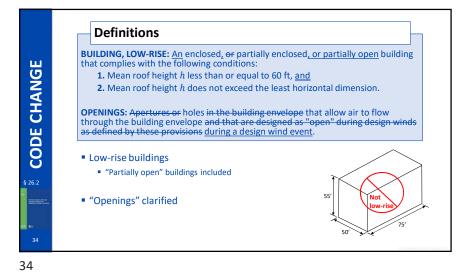




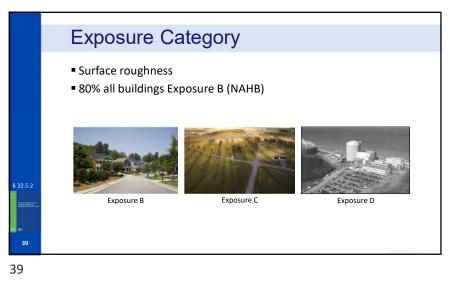

System	ASCE 7 Chapter	Description
	<mark>27</mark>	Directional procedure for buildings of all heights
	<mark>28</mark>	Envelope procedure for low-rise buildings
MWFRS	29	Directional procedure for building appurtenances (rooftop structures and rooftop equipment) and other structures
	31	Wind tunnel procedure for any building or other structure
C&C	<mark>30</mark>	 Envelope procedure in Part 1; or Directional procedure in Parts 2 and 3 Building appurtenances (roof overhangs and parapets) in Part 4; and Nonbuilding structures in Part 5
	31	Wind tunnel procedure for any building or other structure
• Will no	t cover Chapt	er 31
	t cover nonbu ept ground-mou	ilding structures nted PV systems
	Table 5.1 from S	tructural Load Determination: 2024 IBC and ASCE/SEI 7-22 – McGraw Hill

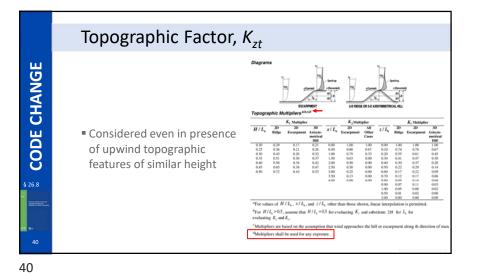
Summary of ASCE 7-22 Major Wind Changes

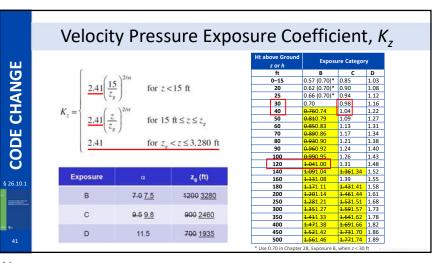
- Basic wind speeds , V, updated (already discussed)
- "Simple Diaphragm Building" deleted
 - 2 simplified methods also deleted
- Wind directionality factor, *K*_d, moved
- Topographic factor, K_{zt}, updated
- Velocity pressure exposure coefficient, K_z, revised
- New provisions for "Elevated Buildings" added
- New provisions for ground-mounted fixed-tilt solar panel systems added
- C&C wind load provisions revised


30

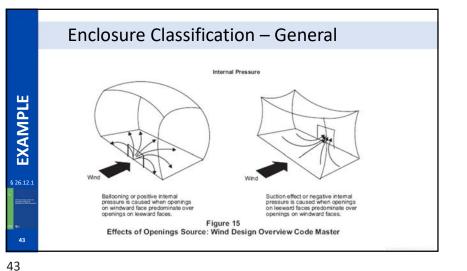


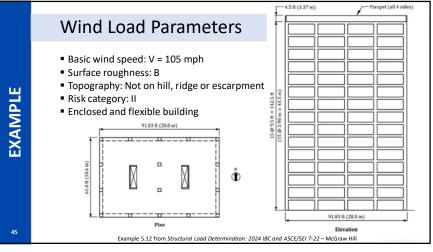

33

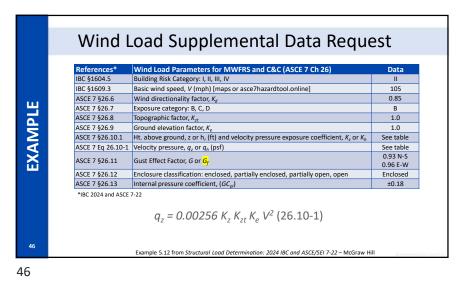

CODE CHANGE

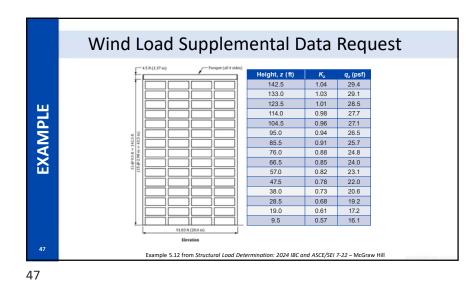


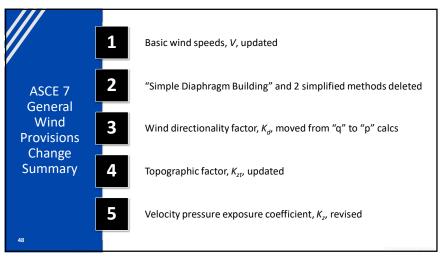
Windloo	de Conoral Requirements
VVIIIU LOd	ds – General Requirements
References*	Wind Loads: General Requirements (for both MWFRS and C&C) [ASCE 7 Ch 26]
ASCE 7 F26.5-1A-D or asce7hazardtool.online	Basic wind speed, V
ASCE 7 §26.6	Directionality factor, K _d
ASCE 7 §26.7	Exposure category: B, C or D
ASCE 7 §26.8	Topographic factor, K _{zt}
ASCE 7 §26.9	Ground elevation factor, Ke
ASCE 7 §26.10.1	Velocity pressure exposure coefficient, K _z or K _h
ASCE 7 §26.11	Gust Effect Factor, G and G _f
ASCE 7 §26.12	Enclosure classification
ASCE 7 §26.13	Internal pressure coefficient, (GC _{pi})
*IBC 2024 and ASCE 7-22	
	pressure coefficients sometimes
	grouped with gust factor – shown
	inside parenthesis

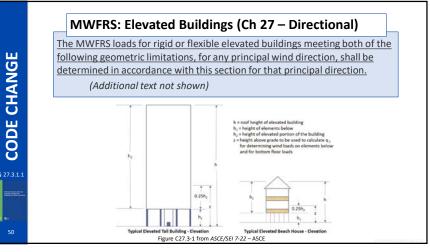


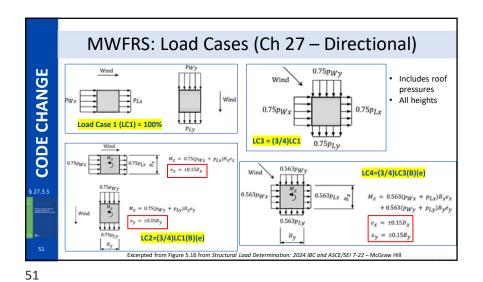


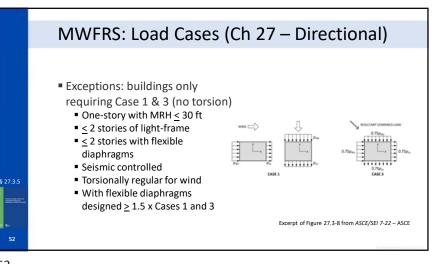


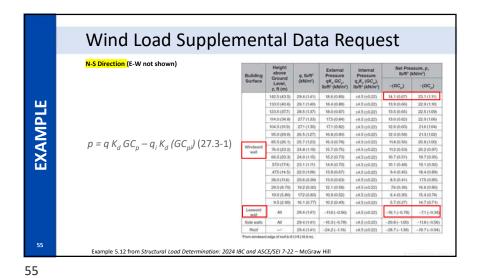



Enclosu	re Classification – Gener	ral	-
For the number		a officiente al	Libuildin on an d
	e of determining internal pressure	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	s for which internal pressure coeffi	2	
classified as end	closed, partially enclosed, partially	open, or open	, as defined in
Section 26.2. If	a building or other structure satisfi	es both the "o	pen" and "partially
enclosed" enclo	osure classification definitions, it sh	all be classifie	d as a "partially
open" building	or other structure.		
open" building	or other structure.		
	or other structure. Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope		
	Force Resisting System and Components and Cladding		
Table 26.13-1 Main Wind	Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope Criteria for Enclosure Classification A, is less than the smaller of 0.01A,	n Buildings (Walls and	Roof)
Table 26.13-1 Main Wind	Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope Criteria for Enclosure Classification	n Buildings (Walls and	Roof) Internal Pressure Coefficient, (GC
Table 26.13-1 Main Wind	Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope Criteria for Enclosure Classification A_{μ} is less than the smaller of 0.01 A_{μ} or 4 sq ft (0.37 m) and $A_{\mu}/A_{\mu} \leq 9.2$ $A_{\mu} > 1.1A_{\mu}$ and $A_{\mu} >$ the lesser of 0.01 A_{μ}	n Buildings (Walls and	Hoof) Internal Pressure Coefficient, (GC +0.18 -0.18 +0.55 -0.55
Table 26.13-1 Main Wind Enclosure Classification Enclosed buildings Partially enclosed buildings	Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope Criteris for Enclosure Classification A_c is less than the smaller of $0.01A_c$ or 4 sq ft 0.37 m) and $A_{cl}/A_{FS} \leq 0.2$ $A_c > 1.1A_{cc}$ and $A_c > hc$ less or of $0.01A_c$ or 4 sq ft 0.37 m) and $A_{cl}/A_{FS} \leq 0.2$	n Buildings (Walls and Internal Pressure Moderate High	Roof) Memal Pressure Coefficient, (GC +0.18 -0.18 +0.55 -0.55
Table 26.13-1 Main Wind Enclosure Classification Enclosed buildings	Force Resisting System and Components and Cladding Enclosed, Partially Enclosed, Partially Open, and Ope Criteria for Enclosure Classification A_{μ} is less than the smaller of 0.01 A_{μ} or 4 sq ft (0.37 m) and $A_{\mu}/A_{\mu} \leq 9.2$ $A_{\mu} > 1.1A_{\mu}$ and $A_{\mu} >$ the lesser of 0.01 A_{μ}	n Buildings (Walls and Internal Pressure Moderate	Hoof) Internal Pressure Coefficient, (GC +0.18 -0.18 +0.55

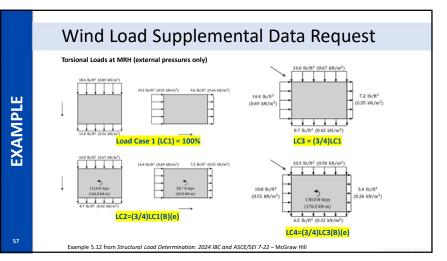


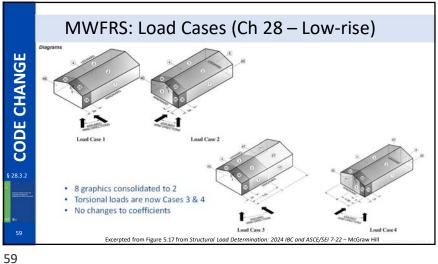


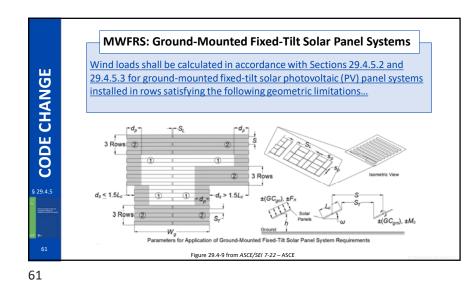


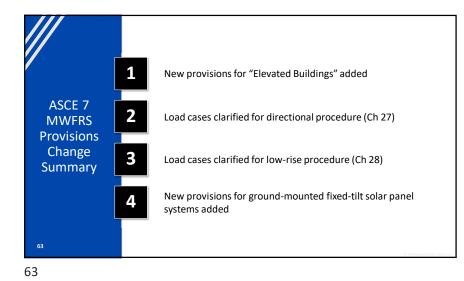

References*	Wind Load Parameters for MWFRS Loads – Buildings of all Height [ASCE 7 Ch 27 – Directional]
ASCE 7 §26.6	Directionality factor, K _d
ASCE 7 §27.3.1	External pressure coefficients, C_{ρ} (enclosed, partially enclosed, and partially open buildings of all heights)
ASCE 7 §27.3.2	External pressure coefficients, C _N (open buildings with monoslope, pitched, or troughed free roofs)
ASCE 7 §27.3.3	Roof overhangs
ASCE 7 §27.3.4	Combined net pressure coefficient for parapets, (GCpn)
ASCE 7 §27.3.5	Controlling wind load Cases: 1, 2, 3, 4
*IBC 2024 and ASCE 7	$p = q \frac{K_a}{K_a} GC_p - q_i \frac{K_a}{K_a} (GC_{pi}) $ (27.3-1) Not open $p = q \frac{K_a}{K_a} GC_N $ (27.3-2) Open $p_p = q_p \frac{K_a}{K_a} (GC_{pn}) $ (27.3-3) Parapets



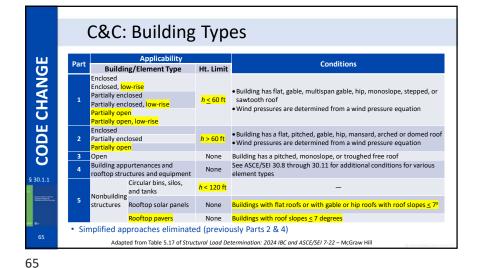



N-S Dire	tion (E-W not shown)		
Referen		27 – Directional)	Data
ASCE 7 §			
ASCE 7 F	7.3-1 Horizontal building dimension perp to wind, B (ft)		91.83
	Horizontal building dimension parallel to wind, L (ft)		61.0
	Roof slope, θ (degrees)		0
	Mean roof height, h (ft) [eave height for $\theta \leq 10^{\circ}$]		142.5
	Height above ground, z (ft)		See table
	Velocity pressure at respective height, $q_{\nu} q_{h}$ or q_{p}		See table
	External pressure coefficients, Cp		F27.3-1
	Combined net pressure coefficient for parapet, (GC _{pn})		W=+1.5 L=-1.0
ASCE 7 §	7.3.5 Wind load Cases: 1, 2, 3, 4		See figure
*IBC 202	$K_d GC_p - q_i K_d (GC_{pi}) $ (27.3-1)		

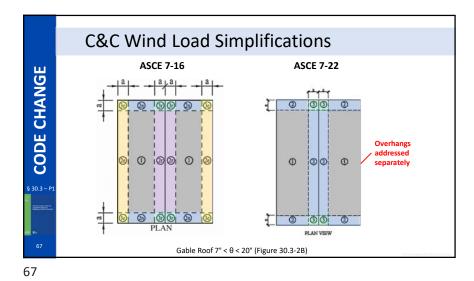


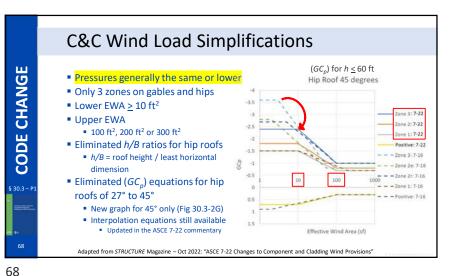


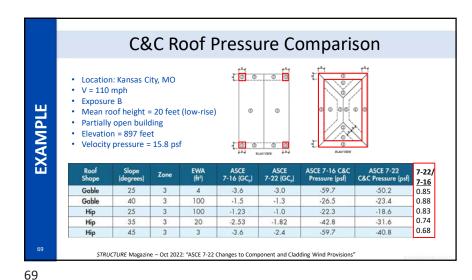
Reference	es*	Wind Load Parameters for MWFF [ASCE 7 Ch 28 – Envelope]	RS Loads – Low-Ri	se (h ≤ 60 ft & h ≤ B & h ≤ L)
ASCE 7 §26	5.6	Directionality factor, K _d		
ASCE 7 §28	3.3.1	External pressure coefficients, (GC _{pf}) (enclosed, partially enclosed, and part	tially open buildings)
ASCE 7 §28	3.3.7	External pressure coefficients, (GC _{pf}) _{wi} (open or partially enclosed building w		es and pitched roof (θ < 45°)
ASCE 7 §28	.3.5	Roof overhangs		
ASCE 7 §28	3.3.4	Combined net pressure coefficient for	parapets, (GC _{pn})	
ASCE 7 §28	.3.2	Controlling wind load Cases: 1, 2, 3, 4		

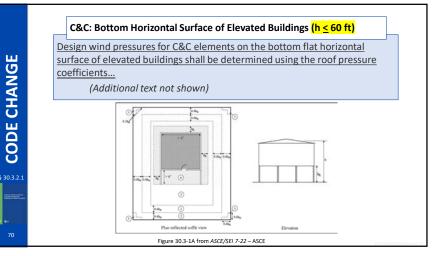


Wind	Load Supplemental Data Request	
References*	Wind Load Parameters for MWFRS Loads (ASCE 7 Ch 29 – Appurtenances)	Data
ASCE 7 §29.4.5	Max loads on ground-mounted fixed-tilt solar PV systems	
	Effective wind area, A (ft ²)	
ASCE 7 §29.4.5.1**	Panel chord length: 6 ft $\leq L_c \leq$ 14 ft Y N	
ASCE 7 §29.4.5.1**	Shortest row length in an array, W_g : $W_g / L_c \ge 7 Y N$	
ASCE 7 §29.4.5.1**	Angle between solar panel and ground, ω : $0^{\circ} \le \omega \le 60^{\circ}$ Y N	
ASCE 7 §29.4.5.1**	Mean height of panel, $h: 0.5 \le h / L_c \le 0.8$ Y N	
ASCE 7 §29.4.5.1**	Center-to-center row spacing, S: $0.2 \le L_c / S \le 0.6 \mid Y N$	
ASCE 7 §29.4.5.1**	Gap between adjacent panels in both directions, $s_p: s_p \le 0.014L_c \mid Y N$	
ASCE 7 §29.4.5.1**	Horizontal longitudinal distance of open area within a single row, $S_L: S_L \le 0.25L_c$ Y N	
ASCE 7 §29.4.5.1**	Horizontal transverse distance of open area between adjacent rows, $S_T \le 2S$ Y N	
ASCE 7 Eq 29.4-10	Combined static and dynamic net pressure coefficient, (GC _{gn})	
ASCE 7 Eq 29.4-11	Combined static and dynamic net pressure moment coefficient, (GC _{gm})	
ASCE 7 §29.4.5.2	Design wind force, F _n (lb) per Eq. 29.4-8	
ASCE 7 §29.4.5.2	Design moment, M _c (plf) per Eq. 29.4-9	
*IBC 2024 and ASCE 7- **Must be Yes to proc		

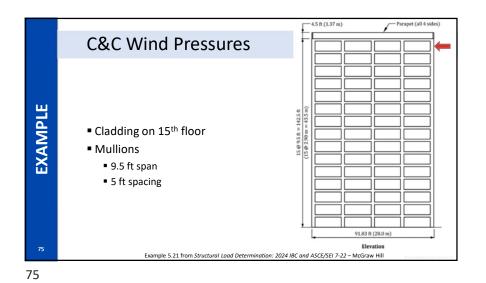


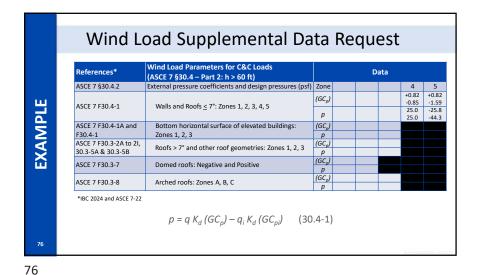

Wind Load Provisions – C&C for Buildings

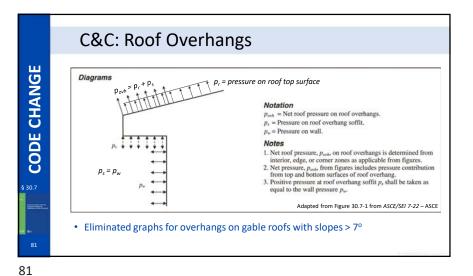

References*	Tornado Load Parameters fo	r C&C Loads (ASCE 7 Ch 30)
ASCE 7 §26.6	Directionality factor, K _d	
	Effective wind area, A	
	External pressure coefficients an	d design pressure, p
ASCE 7 §30.3 (Part 1)	Buildings h < 60 ft or low-rise	(GC _p)
ASCE 7 §30.4.2 (Part 2)	Buildings h > 60 ft (GC _p)	
ASCE 7 §30.5.2 (Part 3)	Open buildings (C _N)	
ASCE 7 §30.6 (Part 4)	Parapets (GC _p)	
ASCE 7 §30.7 (Part 5)	Overhangs (GC _p)	
ASCE 7 §30.12	Pavers (GC _{Lnet})	
*IBC 2024 and ASCE 7-22		
$p = q_h \frac{K_d}{K_d} \left[(GC_p) - (G_p) \right]$	$[C_{pi}]$ (30.3-1)	h ≤ 60 ft or low-rise
$p = q \frac{K_d}{K_d} (GC_p) - q_i \frac{K_d}{K_d}$	(GC_{pi}) (30.4-1)	h > 60 ft
$p = q_h \frac{\overline{K}_d}{K_d} G C_N$	(30.5-1)	Open buildings
$p = q_p \frac{K_d}{K_d} \left[(GC_p) - (GC_p) \right]$	<i>[C_{pi}]</i>] (30.6-1)	Parapets
$p = q_h \frac{K_d}{K_d} \left[(GC_p) - (GC_p) \right]$	(30.7-1) (30.7-1)	Overhangs
$p = q_h \frac{K_d}{K_d} GC_{inet}$	(30.12-1)	Pavers

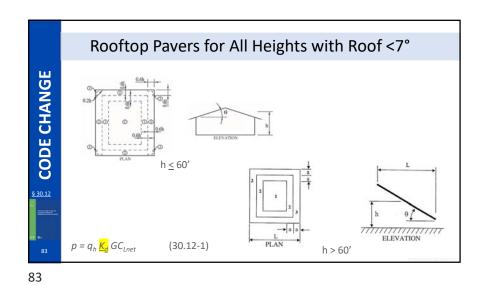


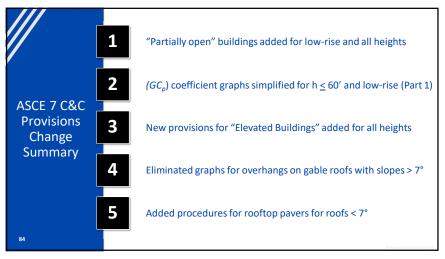

	Part 1: <i>h</i> ≤ 60 ft or lov	v-rise buildings	
	Figures	Change	Table Description
Ī	30.3-1A	Added	Bottom horizontal surface of elevated buildings
	30.3-2B through 30.3-2G	Significantly revised	Gable and hip roofs ($\theta > 7^{\circ}$)
	30.3-2H and 30.3-2I	Removed	Hip roofs (27° < $\theta \le 45^{\circ}$) Roo and Overhang
	30.3-3	Significantly revised	Stepped roofs ($\theta \le 7^{\circ}$)
	30.3-4 through 30.3-7	Added "partially open buildings"	Multispan gable, monoslope sawtooth, domed roofs
	30.3-8	Added	Arched roofs

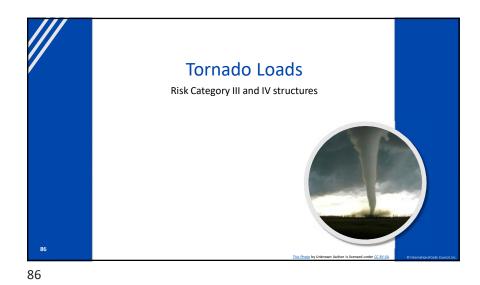


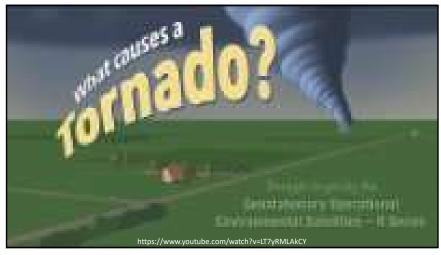


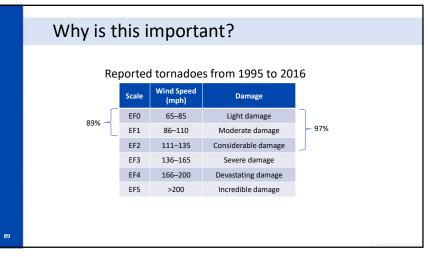







C&C: Parapets Load case A: Windward parapet Load case B: Leeward parapet $p_3 = p_3$ $p_1 = p_2$ p_5 $p_5 = postive$ wall pressure from zones 4 or 5 from the applicable figure p_{γ} = negative roof pressure from zones 2 or 3 from the applicable figure p_6 = negative wall pressure from zones 4 or 5 from the applicable figure


	References*	Wind Load Parameters for C&C Loads (ASCE 7 §30.6 – Part 4: Parapets)			Data	a			
1	ASCE 7 §30.6	External pressure coefficients and design pressures (psf)		(GC,)	<i>p</i> ₁	<i>p</i> ₂	p ₃	P ₄
1	ASCE 7 F30.3-1	Walls with h < 60': Zones 4 & 5							
	ASCE 7 F30.4-1	Walls with h > 60': Zones 2, 3, 4 & 5		A: -3.2 B: -1.8	A: 0.9 B: 0.9	18.2 27.2			-49. -40.
	ASCE 7 F30.3-2A to F30.3-2C	Flat, Gable and Hip Roofs: Zones 2, 3							
	ASCE 7 F30.3-3	Stepped Roofs: Zones 2, 3		əl səvr A ədəsəni paraşət	Wad			Lond care II. Lormand para	er.
	ASCE 7 F30.3-4	Multispan gable roofs: Zones 2, 3	E	1.]	-	•		1	1
	ASCE 7 F30.3-5A and F30.3-5B	Monoslope Roofs: Zones 2, 2', 3	n-n	- Andrewski - Construction		11	11	- the second	- ^
	ASCE 7 F30.3-6	Sawtooth roofs: Zones 2, 3A, 3 (BCD)	in E		+				1
	ASCE 7 F30.3-7	Domed roofs – all heights: negative and positive							
	ASCE 7 F30.3-8	Arched roofs: Zone C	L	4.4				4	
	*IBC 2024 and ASC	E 7-22							



Construction Documents

Risk category

coefficients.

tornado pressures.

Tornado design data added

the design of the lateral force-resisting system of the structure:

Wind and tornado design data. The following information related to wind loads and where required

by Section 1609.5 tornado loads shall be shown, regardless of whether wind or tornado loads govern

Basic design wind wind speed, V (mph), tornado speed, V_T (mph), miles per hour and allowable

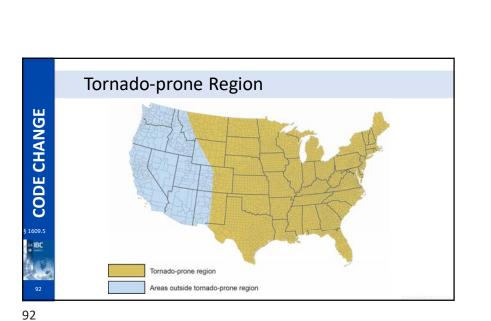
stress design wind speed, V_{asd (mph}) as determined in accordance with Section 1609.3.1.

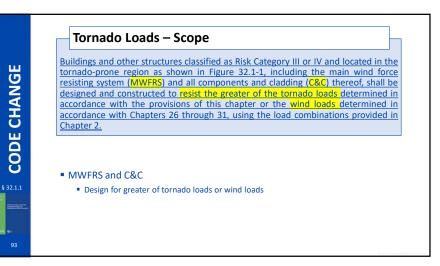
 Effective plan area, A_{ex} for tornado design in accordance with Chapter 32 of ASCE 7.
 Wind exposure. Applicable wind direction if more than one wind exposure is utilized. 4-5. Applicable internal pressure coefficients, and applicable tornado internal pressure

5-6. Design wind pressures and their applicable zones with dimensions to be used for exterior component and cladding materials not specifically designed by the registered design professional responsible for the design of the structure, pounds per square foot. Where design

for tornado loads is required, the design pressures shown shall be the maximum of wind or

Tornado Loads


The design and construction of Risk Category III and IV buildings and other structures located in the tornado-prone region as shown in Figure 1609.5 shall be in accordance with Chapter 32 of ASCE 7, except as modified by this code.

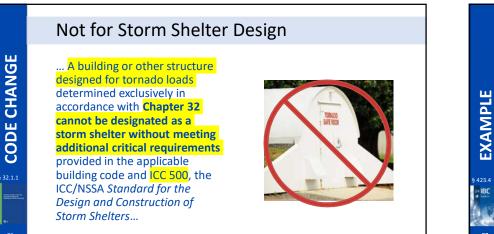

- Risk Category III and IV buildings
- Tornado-prone region

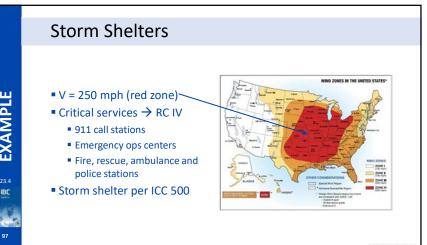
ASCE 7 Chapter 32

CODE CHANGE

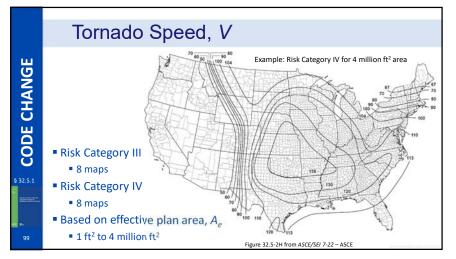
1603.1.

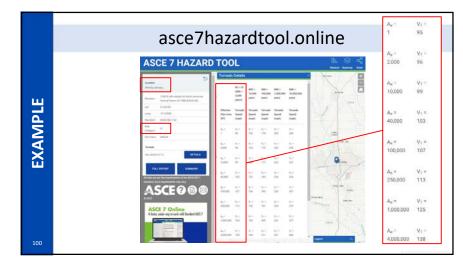
IBC

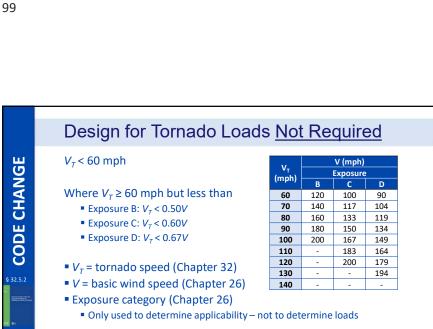

91

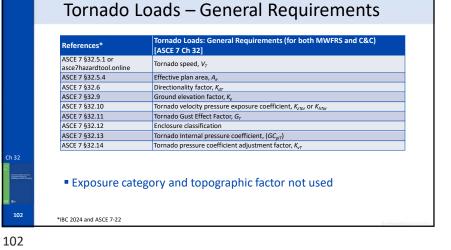

	Load Combinations	
CODE CHANGE	Strength Design 1.2D + 1.0(W <u>or W_T</u>) + L + (0.5L _r or <u>0.3</u>S or 0.5R) 0.9D + 1.0 (W <u>or W_T</u>)	(Eq 4a) (Eq 5a)
\$2.3.3 &2.4.3	ASD D + 0.6(W <u>or W_T</u>) D + 0.75L + 0.75(0.6(W <u>or W_T</u>)) + 0.75(L _r or <u>0.7</u>S-or R) 0.6D + 0.6(W <u>or W_T</u>) W_{τ} = load due to tornado pressure Snow ignored if W _t controls – tornados are warm-weather events	(Eq 5a) (Eq 6a) (Eq 7a)

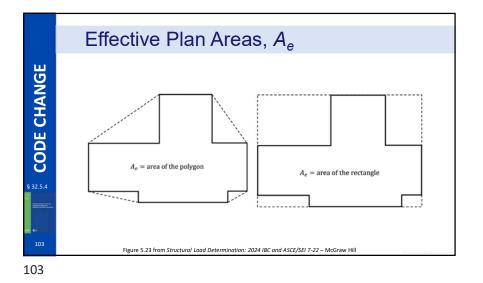
Design Procedures for Tornado Loads

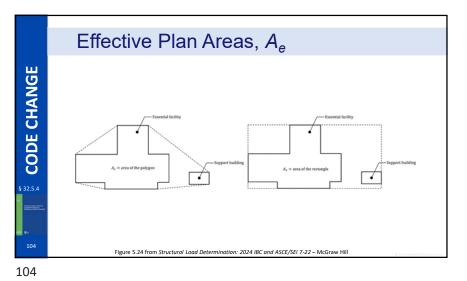

Element	Permitted Procedure	Modified by
	Directional procedure – buildings of all heights (Ch 27)	§ 32.15
MWFRS	Directional procedure – appurtenances (Ch 29)	§ 32.16
	Wind tunnel (Ch 31)	§ 32.18
68.6	Parts 1 through 5 (Ch 30)	§ 32.17
C&C	Wind tunnel (Ch 31)	§ 32.18

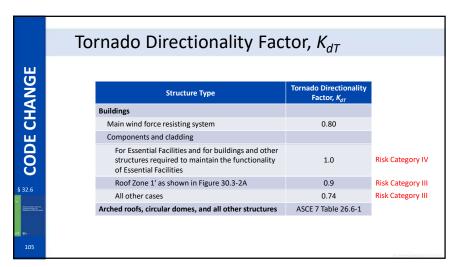

95

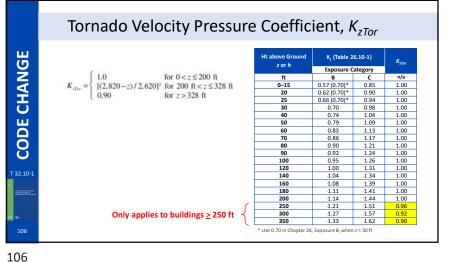


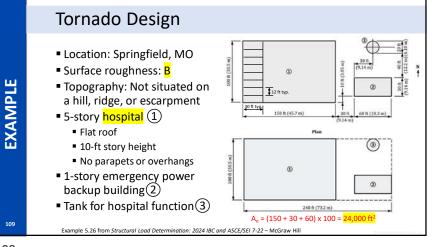


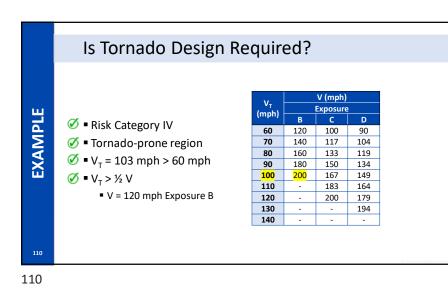

94

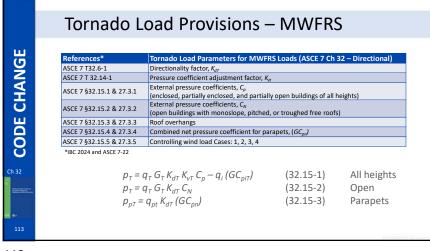


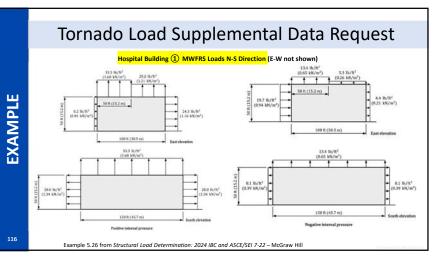


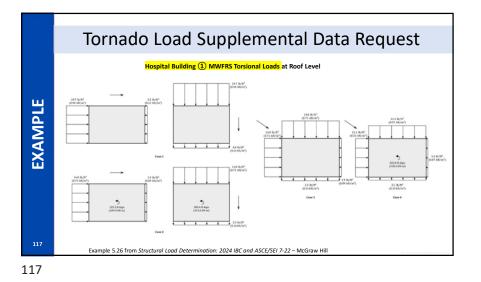






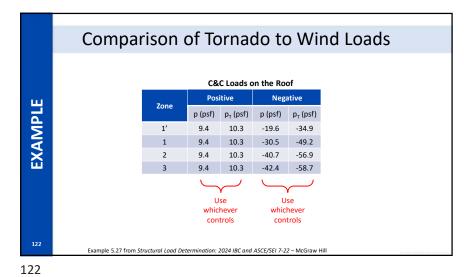

	Tornado Internal Press	ure Coeffic	cients (<i>GC_{pi}</i>
CODE CHANGE		Chapter 26 for wind loads ↓	
СНА	Enclosure Classification	Internal Pressure Coefficients (GC _{pi})	Tornado Internal Pressure Coefficients (GC _{piT})
ш	Sealed other structures	n/a	+1.0
	Enclosed buildings and other structures	+0.18 / -0.18	<mark>+0.55</mark> / -0.18
N	Partially enclosed buildings and other structures	+0.55 / -0.55	+0.55 / -0.55
	Partially open buildings and other structures	+0.18 / -0.18	+0.18 / -0.18
T 32.13-1	Open buildings and other structures	0.00	0.00
107	For MWFRS and C&C (all heights)		



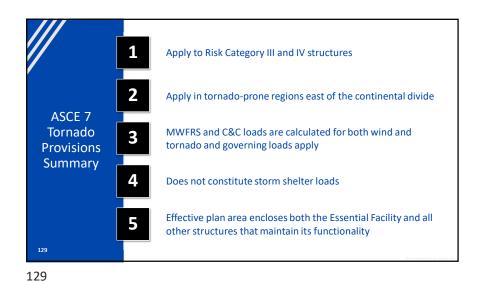

References*	Tornado Load Parameters for MWFRS and C&C (ASCE 7 Ch 32)	Data
IBC §1604.5	Building Risk Category: I, II, III, IV	IV
ASCE 7 §32.5.4.1	Effective plan area, A _e (ft ²)	24,00
ASCE 7 §32.5	Tornado speed, V_{τ} (mph) [maps or asce7hazardtool.online]	103
ASCE 7 §26.9	Ground elevation factor, K _e	1.0
ASCE 7 §32.10.1	Height z or h (ft) and tornado velocity pressure exposure coefficient, K _{zTor} or K _{hTor}	1.0
ASCE 7 Eq 32.10-1	Tornado velocity pressure, $q_{z\tau}$ or $q_{h\tau}$ (psf)	27.2
ASCE 7 §32.11.1	Tornado gust effect factor, G_{τ} = 0.85 (or per Eq 26.11-6 using Exp C)	0.85
ASCE 7 §32.12.2	Enclosure classification: enclosed, partially enclosed, partially open, open, sealed	Enclos
ASCE 7 §32.13	Internal pressure coefficient, GC _{pit}	+0.55 -0.18
*IBC 2024 and ASCE	$q_{zT} = 0.00256 K_{zTor} K_e V_T^2$ (32.10-1)	

	Tornado Pressure Coefficier Factor for Vertical Winds, K		t
CODE CHANGE	STRUCTURE TYPE Buildings Negative (Uplift) Pressures on Roofs NWVFRS C&C Roof slope ≤ 7" Zone 1 Zone 2	κ _σ 1.1 1.2 1.05	
CODE (Zone 3 Roof slope > 7" Zone 1 Zone 2 Zone 3 Positive Pressures (Downward Acting) on Roofs Wall Pressures All Other Cases	1.05 1.2 1.3 1.0 1.0 1.0	
T 32.14-1	Other Structures Negative (Uplift) Pressures on Rooftop Structures and Equipment and Rooftop Solar Panels Parallel to the Roof Surface MWFRS C&C	1.1 Use values for building C&C	
112	Negative (Uplift) Pressures on Roofs of Bins, Silos, and Tanks MWFRS C&C All Other Cases	1.1 See Section 32.17.5 1.0	

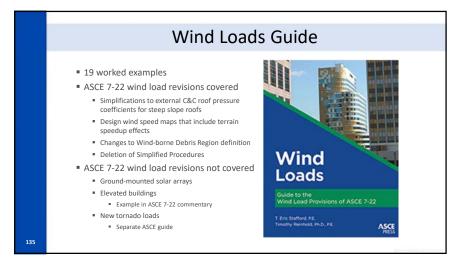
	Tornad	do Load Supplemental Data Re	quest
	Hospital Building	g ① N-S Direction (E-W not shown)	
	References*	Wind Load Parameters for MWFRS Loads (ASCE 7 Ch 32 – Directional)	Data
	ASCE 7 T32.6-1	Directionality factor, K _{dT}	0.80
ч	ASCE 7 T 32.14-1	Pressure coefficient adjustment factor, K _{vt}	Roof (-): 1.1 Roof (+): 1.0 Walls: 1.0
CVAIVIPLE	ASCE 7 §32.15.1 & 27.3.1	Flat, gable, hip, monoslope and mansard roofs – not open (Fig 27.3-1) (enclosed, partially enclosed, and partially open buildings of all heights)	
≥	ASCE 7 F27.3-1	Horizontal building dimension perp to wind, B (ft)	150
		Horizontal building dimension parallel to wind, L (ft)	100
2		Roof slope, θ (degrees)	0
3		Mean roof height, h (ft) [eave height for $\theta \le 10^{\circ}$]	50
		Height above ground, z (ft)	n/a
		Velocity pressure at respective height, q_{ν} $q_{h\nu}$ or q_{ρ}	See table
		External pressure coefficients, C _p	F27.3-1
	ASCE 7 §32.15.4 & 27.3.4	Combined net pressure coefficient for parapet, (GC_{pn})	n/a
	ASCE 7 §32.15.5 & 27.3.5	Wind load Cases: 1, 2, 3, 4	See figure
15	*IBC 2024 and ASC	$p_T = q_T O_T R_{dT} R_{vT} C_p q_i (O C_{piT}) (52.15^{-1})$	
	Example 5.26 fro	om Structural Load Determination: 2024 IBC and ASCE/SEI 7-22 – McGraw Hill	8

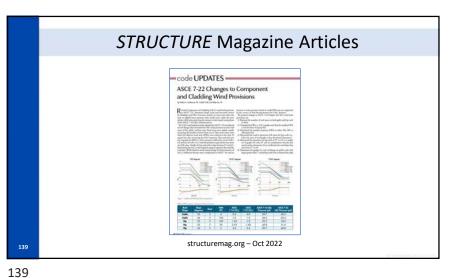


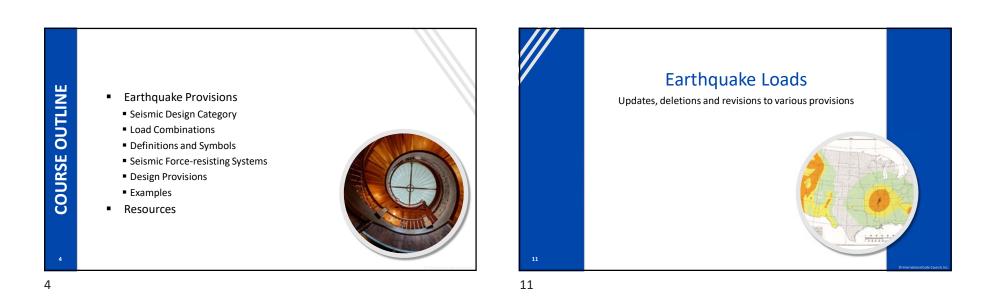
	Compa	rison	of To	orna	do t	o Wi	nd Lo	oads	
	<mark>MWFRS</mark>	Loads N-S Di	irection v	vith Nega	itive Inter	rnal Press	ure (E-W r	not showr	h)
Щ			Windwa	ard Wall	Leewa	rd Wall			
EXAMPLE		Height (ft)	p (psf)	p⊤ (psf)	p (psf)	p⊤ (psf)			
2		50	21.3	19.7	-6.1	-4.4			
5		40	20.3	19.7	-6.1	-4.4			
Ω		30	19.1	19.7	-6.1	-4.4			
		20	17.6	19.7	-6.1	-4.4			
		10	16.7	19.7	-6.1	-4.4			
			\subseteq	\sim	\subseteq	\sim			
			U	lse	U	se			
				hever		hever			
118	Example 5.26 from	Structural Load De		i <mark>trols</mark> : 2024 IBC an		<mark>trols</mark> 22 – McGraw	Hill		

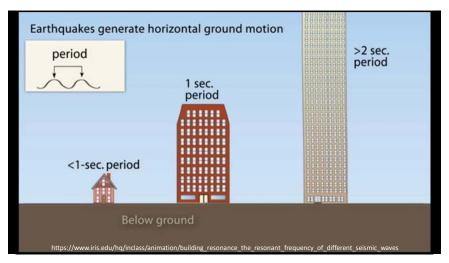

References*	Tornado Load Para	ameters for C&C Load	ls (ASCE 7 Ch 32 – Directiona
ASCE 7 T32.6-1	Directionality factor,	K _{dT}	
ASCE 7 T 32.14-1	Pressure coefficient	adjustment factor, K _{vt}	
	Effective wind area,	EWA	
	External pressure co	efficients and design tor	nado pressure, p_{T}
ASCE 7 §32.17.1 & 30.3	Buildings h < 60 ft		
ASCE 7 §32.17.2 & 30.4.2	Buildings h > 60 ft	, pr	
ASCE 7 §32.17.3 & 30.5.2	Open buildings (C	N)	
ASCE 7 §32.17.4.1 & 30.6	Parapets (GC _p)		
ASCE 7 §32.17.4.2 & 30.7	Overhangs (GC _p)		
*IBC 2024 and ASCE 7-22			
$p_T = q_{hT} \left[K_{dT} K_{vT} \right] (G$	$(G_p) - (GC_{pit})]$	(32.17-1)	h <u><</u> 60 ft & low-rise
$p_T = qK_{dT}K_{vT}(GC_p)$	$-q_i(GC_{nit})$	(32.17-2)	h > 60 ft
$p_T = q_{hT} G_T K_{dT} C_N$	n pin	(32.17-3)	Open buildings
· / ·/// / // //	100 11	()	1 0
$p_{\scriptscriptstyle T} = q_{\scriptscriptstyle pT} \left[K_{dT} \left(G C_p \right) \right.$		(32.17-4)	Parapets
$p_T = q_{hT} [K_{dT} K_{vT} (G$	$G(C_n) = (GC_{nit})$	(32.17-5)	Overhangs

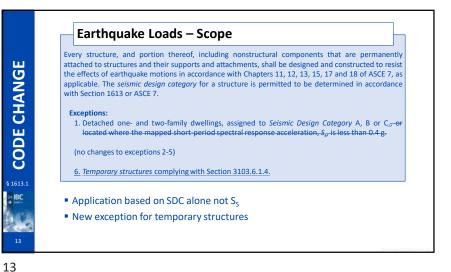
119

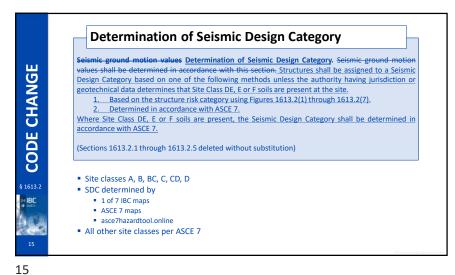

References*	Tornado Load Parameters for C&C Loads: h < 60 ft or low-rise			Dat	а		
ASCE 7 T32.6-1	Directionality factor, $K_{d\tau}$			1.0)		
		Zone	1' (-)	1 (-)	2 (-)	3 (-)	3 (+
ASCE 7 T 32.14-1	Pressure coefficient adjustment factor, K _{vt}		1.2	1.2	1.05	1.05	1.0
ASCE 7 §32.17.1 & 30.3	External pressure coefficients and design pressures (psf)	Zone	1′ (-)	1 (-)	2 (-)	3 (-)	
ASCE 7 E30.3-1	Walls: Zones 4 & 5	(GC _p)					
		p _T					
ASCE 7 F30.3-1A, §32.17.1.1 &	Bottom horizontal surface of elevated buildings	(GC _p)					
F30.3-2A	(K _{vt} = 1.0): Zones 1', 1, 2, 3	p _T					
		(GC_)	0.20	0.20	0.20	0.20	
ASCE 7 F30.3-2A	Gable (flat) Roofs < 7°: Zones 1', 1, 2, 3	· ·	-0.61	-1.05	-1.47	-1.53	
ASCE 7 E30.3-2B		p_{T}		See t	able	_	
to F30.3-2G	Gable or Hip Roofs > 7°: Zones 1, 2, 3	(GC _p) p _T					
	7-22	PT					

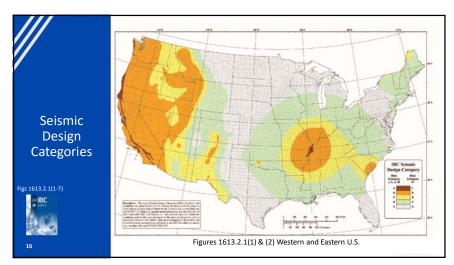


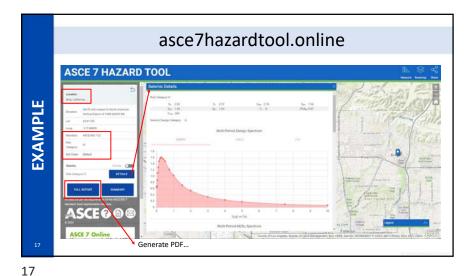

	Compariso	on of	Torna	do to '	Wind L	oads	
	Co	ntrolling	g Load on H	ospital (N-S	Direction)		
EXAMPLE		Height (ft)	Windward Wall	Leeward Wall	Roof		
E I		50	Wind	Wind			
E E		40	Wind	Wind			
\geq		30	Tornado	Wind			
ш		20	Tornado	Wind			
		10	Tornado	Wind			
		Roof	-	-	Tornado		
123							











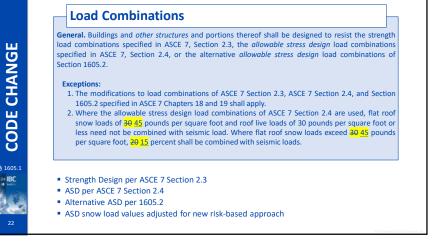
<page-header><page-header><page-header><page-header><page-header><page-header><complex-block><complex-block>

Ballasted Photovoltaic Panel Systems

Ballasted, roof-mounted photovoltaic panel systems need not be rigidly attached to the roof or supporting structure. Ballasted non-penetrating systems Ballasted, unattached PV panel systems shall be designed and installed only on roofs with slopes not more than one unit vertical in 12 units horizontal. Ballasted nonpenetrating systems Ballasted, unattached PV panel systems shall be designed to resist accommodate sliding and uplift in accordance with ASCE 7 Chapter 13, resulting from lateral and vertical forces as required by Section 1605, using a coefficient of friction determined by acceptable engineering principles. In structures assigned to Seismic Design Category C, D, F or F, ballasted nonpenetrating systems shall be designed to accommodate seismic displacement determined by nonlinear response history or other approved analysis or shake table testing, using input motions consistent with ASCE 7 lateral and vertical seismic forces for nonstructural components on roofs.

Ballasted, <u>unattached</u> PV systems

- Roofs < 1:12
- Designed to accommodate sliding per ASCE 7
- Simplified provisions


Elevators, Escalators, and Other Conveying Systems Elevators, escalators, and other conveying systems and their components shall satisfy the seismic requirements of ASCE 7 and ASME A17.1/CSA B44 as applicable. Similar provisions for flood and wind loads ASME A17.1-2022/CSA B44-22: Safety Code for Elevators and Escalators

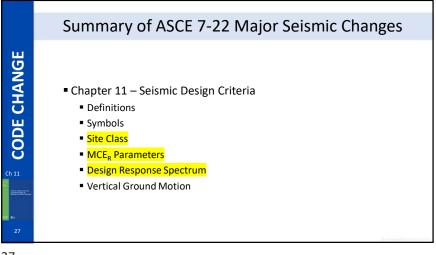
20

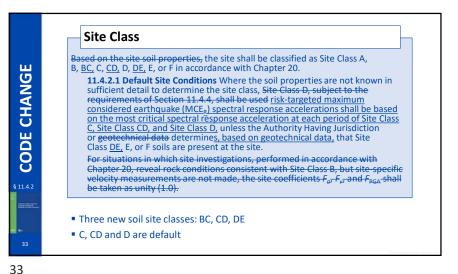
• Standard for the Installation of Sprinkler Systems

25

	Strength Design Seismic I	Load Combinations
	Strength Design	
5	$1.2D + E_v + E_h + L + \frac{0.20.15}{0.15}S$	(Eq 6)
CHANGE	$0.9D - E_v + Eh$	(Eq 7)
	Overstrength	
H	6. 1.2 $D + E_v + E_{mh} + L + \frac{0.20.15}{0.15}S$	(Eq 6)
CODE	$7.\ 0.9D - E_v + E_{mh}$	(Eq 7)
2.3.6		
	 The most unfavorable effects from where appropriate, but they need r with wind <u>or tornado</u> loads. 	seismic loads shall be investigated not be considered to act simultaneously
23		

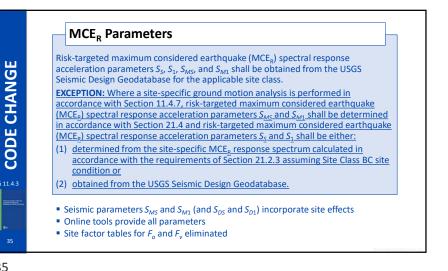
	ASD Seismic Load Combinations
CODE CHANGE	Allowable Stress Design (ASD) $1.0D + 0.7E_v + 0.7E_h$ (Eq 8) $1.0D + 0.525E_v + 0.525E_h + 0.75L + \frac{9.750.1}{9.750.1}S$ (Eq 9) $0.6D - 0.7E_v + 0.7Eh$ (Eq 10) Overstrength $1.0D + 0.7E_v + 0.7E_{mh}$ (Eq 8) $1.0D + 0.7E_v + 0.7E_{mh}$ (Eq 8) $1.0D + 0.525E_v + 0.525E_{mh} + 0.75L + \frac{0.750.1}{9.750.1}S$ (Eq 9) $0.6D - 0.7E_v + 0.7E_{mh}$ (Eq 10)
2.4.1	 Seismic load effects shall be combined with other loads, in accordance with Section 2.4.5. Wind and seismic loads The most unfavorable effects from wind loads, tornado loads, and earthquake loads shall be considered, where appropriate, but they need not be considered assumed to act simultaneouslyWhen a structure is subject to seismic load effects, the following load combinations shall be considered in addition to the basic combinations and associated exceptions detailed in Section 2.4.1.

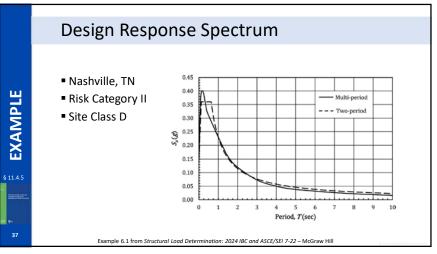

24

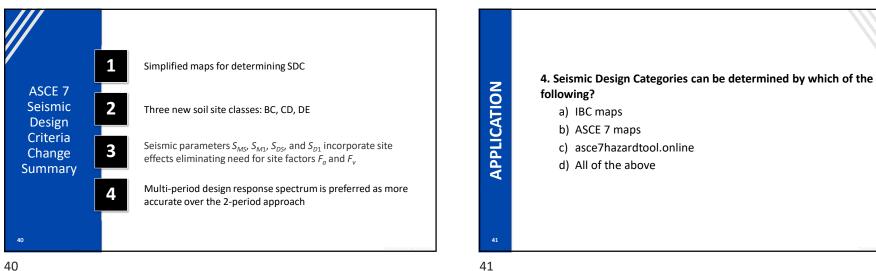

	Load Combina	tions – Alternative ASD
	D + L + (L _r or <u>0.7</u> S or R)	(Eq 16-1)
CHANGE	D + L + 0.6W	(Eq 16-2)
	D + L + 0.6W + <u>0.7</u> S/2	(Eq 16-3)
5	D + L + <u>0.7</u> S + 0.6W/2	(Eq 16-4)
5	D + L + <mark>0.7</mark> S + E/1.4	(Eq 16-5)
	0.9D + E/1.4	(Eq 16-6)
COD	pounds per square foot or less	ds of <mark>30 45</mark> pounds per square foot or less and <i>roof live loads</i> of 30 need not be combined with seismic loads. Where flat roof snow square foot, <mark>20 <u>15</u> percent shall be combined with seismic loads.</mark>
5.2 C	chapter or referenced standard	for seismic loads, the vertical seismic load effect, E_{ν} , in Equation 12.4-

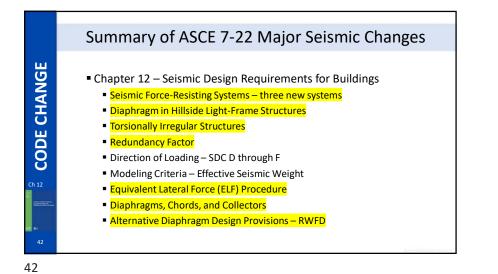
Summary of ASCE 7-22 Seismic Procedures

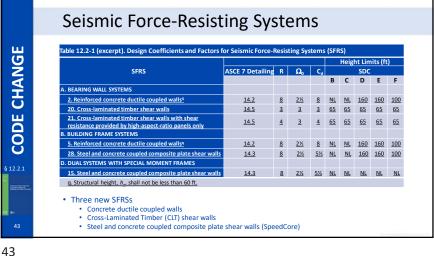
Table 6.1 Chapters in ASCE/SEI 7 Referenced by the IBC for Seismic Load Provisions

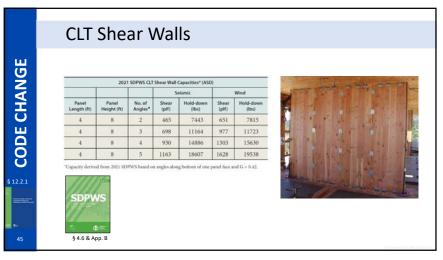

Chapter	Title	
11	Seismic Design Criteria	
12	Seismic Design Requirements for Building Structures	
13	Seismic Design Requirements for Nonstructural Compo	onents
15	Seismic Design Requirements for Nonbuilding Structure	es
20	Site Classification Procedure for Seismic Design	
21	Site-Specific Ground Motion Procedures for Seismic De	esign
22	Seismic Ground Motion and Long-Period Transition Ma	ps

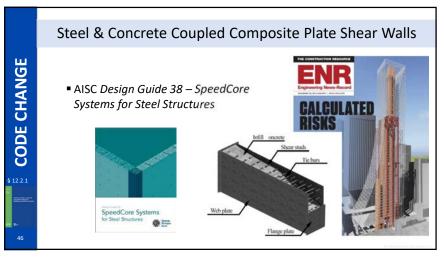


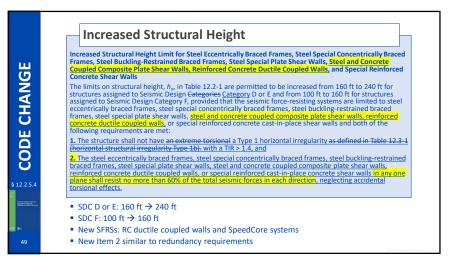

	Site Classification		
CHANGE	Site Class	v _s (ft/s)	
3	A. Hard rock	>5,000	Based on shear wave velocity
₹ I	B. <u>Medium hard</u> rock 2	2,500<u>>3,000</u> to 5,000	f tests only
ΰ	BC. Soft rock		
ш	C. Very dense soil and soft rock sand or hard clay	clay 1,200>1,450 to 2,5002,100 Use if soil	
	CD. Dense sand or very stiff clay >	>1,000 to 1,450	 properties
CODE	D. Stiff soil-Medium dense sand or stiff clay	500 >700 to 1,200 1,000	unknown
	DE. Loose sand or medium stiff clay >	>500 to 700	-
20.2-1	E. Soft clay soil Very loose sand or soft clay	< <u>600≥500</u>	
-	F. Soils requiring a site response analysis in accordance with ASCE/ SEI 21.1	See Section <u>20.2.1</u>	
	Average shear wave velocity parameter, v_{s} , is derived wave velocity profile from the ground surface to a dep		
34	Adapted from ASCE 7-22 Table 2	20.2-1	

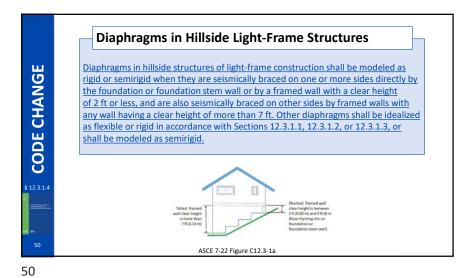


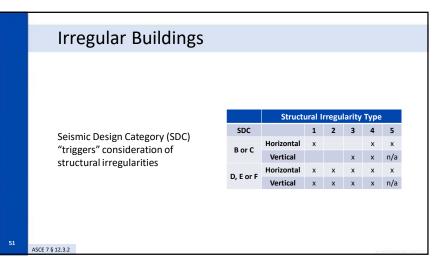

	Design Response Spectrum
CODE CHANGE	 Where a design response spectrum is required by this standard and site specific ground motion procedures are not used, the design response spectrum eurve shall be developed as indicated in Fig. 11.4-1 and as follows: determined in accordance with the requirements of Section 11.4.5.1. EXCEPTIONS: Where a site-specific ground motion analysis is performed in accordance with Section 11.4.7, the design response spectrum shall be determined in accordance with Section 21.3. Where values of the multi-period 5%-damped MCE_n response spectrum are not available from the USGS Seismic Design Geodatabase, the design response spectrum shall be permitted to be determined in accordance with Section 11.4.5.2.
	 11.4.5.1 Multi-period design response spectrum – more accurate 11.4.5.2 Two-period design response spectrum – permitted
36	i i pri i i i i i i i i i i i pri i i i

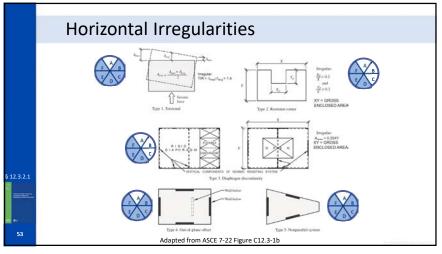

37

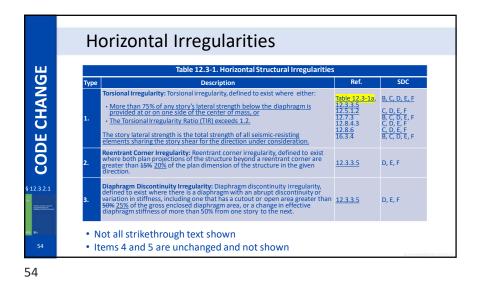


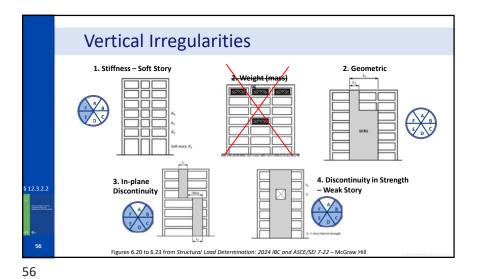


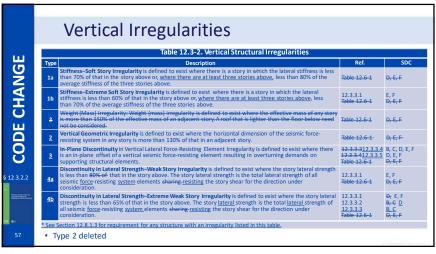


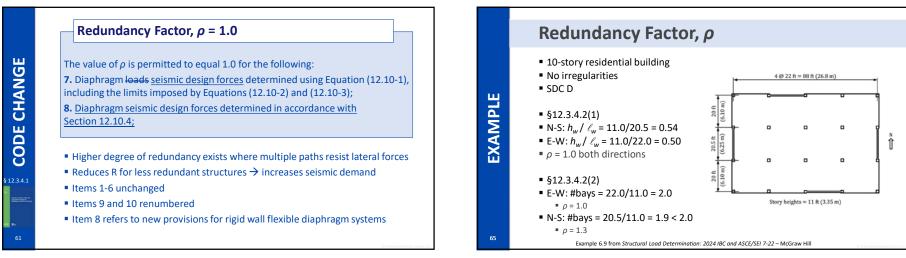

<page-header><section-header><page-header><section-header><section-header><complex-block><complex-block><complex-block><complex-block>

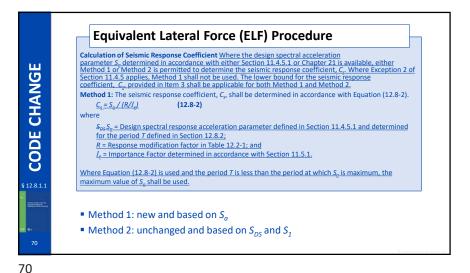


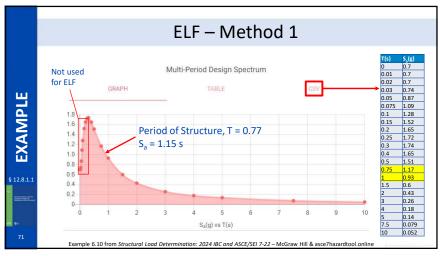


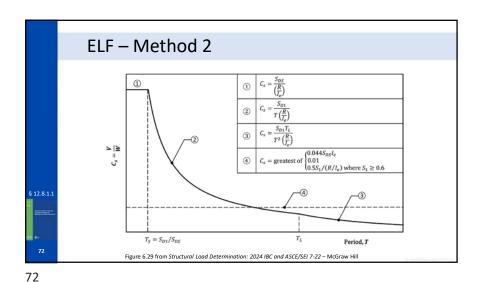

51

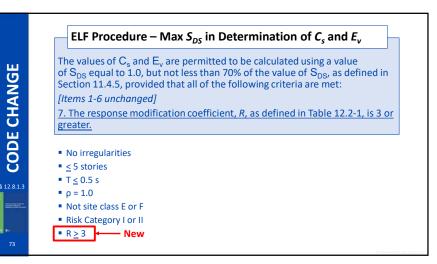

	Torsional Irregularity Ratio
CODE CHANGE	A Torsional Irregularity Ratio (<i>TIR</i>) shall be calculated for each story and for each accidental torsion case: $\overline{IIR} = \Delta_{mox} / \Delta_{avg} \qquad (12.3-2)$ where Δ_{mox} is the maximum story drift at the building's edge subjected to lateral forces using the equivalent lateral force procedure per Section 12.8 with the application of accidental torsion per Section 12.8.4 and $A_x = 1.0$; and Δ_{avg} is the average of the story drifts at the two opposing edges of the building determined using the same loading and diaphragm rigidity as applied for the determination of Δ_{mox} . For the purpose of computing Δ_{mox} and Δ_{avg} , it shall be permitted to assume the diaphragm is rigid for structures with rigid or semirigid diaphragms. The <i>TIR</i> for the building is the maximum value from the values computed for each story and each direction. The <i>TIR</i> shall not apply to structures with flexible diaphragms.
§ 12.3.2.1.1	 Likelihood of excessive torsional response used to trigger design penalties where TIR > 1.2 Not applicable to flexible diaphragms

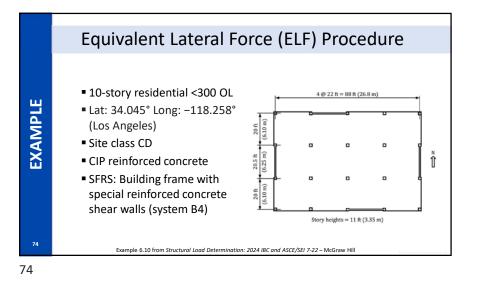


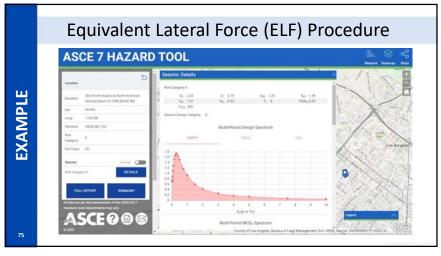

Table 12.3-1a. Reference Sections for Type 1 Horizontal Torsional Irregularity (TIR)					
TIR	<u>SDC</u>	Ref.	Description a		
		<u>15.4.1</u>	Inclusion of accidental torsion in nonbuilding structures not similar to buildings		
	B, C, D, E, F	16.3.4	Mass offset in Nonlinear Response History analysis		
	<u>b, c, b, c, r</u>	17.2.2	Irregularities in Seismically Isolated Buildings		
		<u>18.2.3.2</u>	Applicability of Equivalent Lateral Force Procedure for structures with damping systems		
	<u>C, D, E, F</u>	<u>12.7.3</u>	Use of 3D analytical model		
<u>>1.2 b</u>		12.5.4	Use of orthogonal load combinations		
	D, E, F	12.8.4.2 and 12.8.4.3	Inclusion of amplified accidental torsion		
		12.8.6	Story drift for purpose of comparing to drift limits, computing P-Delta, and checking deformation compatibility must be computed at the edge with the largest drift.		
	<u>D, E, F</u>	12.3.3.4	Amplification of design force for collectors, their connections, and connections of diaphragms t collectors or vertical elements of the seismic force-resisting system (SFRS)		
	B. C. D. E. F	18.2.1.1	Minimum seismic base shear for structures with damping systems		
	D, E, F	12.2.5.4	Increased structural height limits not allowed for certain systems		
<u>>1.4</u>		12.5.4	Use of orthogonal load combinations		
	<u>D, E, F</u>	12.8.4.2	Include accidental torsion		
>1.4 both directions		12.3.4.2.1	Criteria for setting redundancy factor = 1.3		
	D. E. F	12.9.1.5	Restrictions on use mass offset for accidental torsion in Modal Response Spectrum analysis		

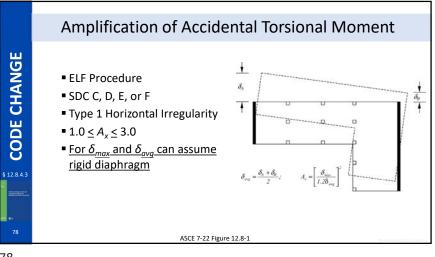


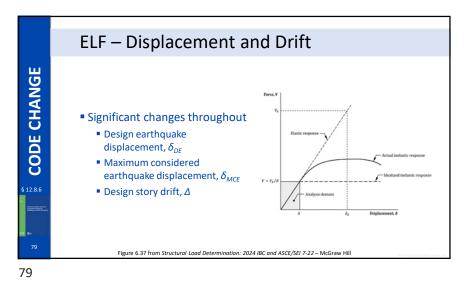



65

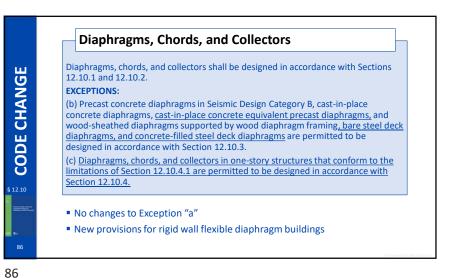






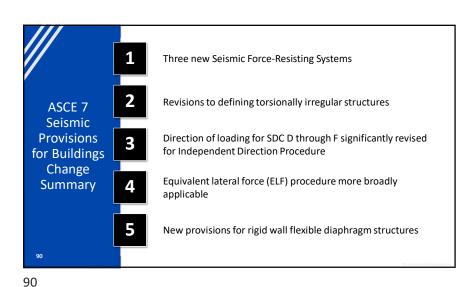


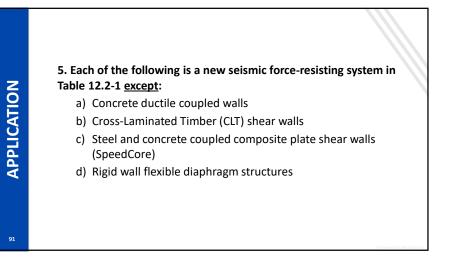
• • • • • • • • •	: Load Supplemental Data Re	quest
References*	Equivalent Lateral Force (ELF) Procedure (ASCE 7 Ch 12)	Data
IBC §1604.5	Building Risk Category: I, II, III, IV	Ш
IBC §1613.2	Seismic Design Category [maps or asce7hazardtool.online]:	D
ASCE 7 T12.2-1	Seismic response coefficient, R:	6
ASCE 7 T1.5-2	Importance factor, I _e :	1.0
ASCE 7 §12.8.2	Fundamental period of the structure, T (s):	0.77
ASCE 7 §12.8.2.1	Approximate fundamental period, T_a (s):	0.68
ASCE 7 §11.4.4	Design spectral acceleration parameters, S _{DS} and S _{D1} [or by §11.4.7]:	1.57 0.9
ASCE 7 T12.8-1	Upper limit coefficient on calculated period, C _u :	1.4
ASCE 7 §12.8.2	Determine if $T > C_u T_a$	0.95 > T use
ASCE 7 hazard tool	Long-period transition period(s), TL:	8
ASCE 7 §12.8.1.1	Seismic response coefficient, C _s :	0.192
ASCE 7 §12.7.2	Portion of effective seismic weight at each level, w _x :	See table
ASCE 7 Eq 12.8-1	Seismic base shear, V:	See table
ASCE 7 §12.8.3	Exponent related to the structure period, k:	1.14
ASCE 7 Eq 12.8-13	Vertical distribution factor, C _{vx} :	See table
ASCE 7 Eq 12.8-12	Lateral seismic force, F _x :	See table


Seismic Forces and Seismic Story Shears – N-S Direction

Level	Story Weight, w _x (kips)	Height, <i>h</i> _x (ft)	w _x h [*]	Lateral Force, F _x (kips)	Story Shear, V _x (kips)
R	708	110.0	150,391	265.7	265.7
10	812	99.0	152,961	270.3	536.0
9	812	88.0	133,741	236.3	772.3
8	812	77.0	114,856	203.0	975.3
7	812	66.0	96,347	170.2	1,145.5
6	812	55.0	78,265	138.3	1,283.8
5	812	44.0	60,687	107.2	1,391.0
4	812	33.0	43,718	77.3	1,468.3
3	812	22.0	27,537	48.7	1,517.0
2	812	11.0	12,495	22.1	1,539.1
Σ	8,016		870,998	1,539.1	

			Structural sep
Story	δ_{e} , in. (mm)	$\delta_{\scriptscriptstyle DE}$ in. (mm)	Δ, in. (mm)
10	3.08 (78.2)	15.40 (391.0)	2.05 (52.0
9	2.67 (67.8)	13.35 (339.0)	2.05 (52.0
8	2.26 (57.4)	11.30 (287.0)	2.05 (52.0
7	1.85 (47.0)	9.25 (235.0)	1.95 (49.5
6	1.46 (37.1)	7.30 (185.5)	1.85 (47.0
5	1.09 (27.7)	5.45 (138.5)	1.70 (43.0
4	0.75 (19.1)	3.75 (95.5)	1.50 (38.5
3	0.45 (11.4)	2.25 (57.0)	1.15 (29.0
2	0.22 (5.6)	1.10 (28.0)	0.75 (19.0
1	0.07 (1.8)	0.35 (9.0)	0.35 (9.0)

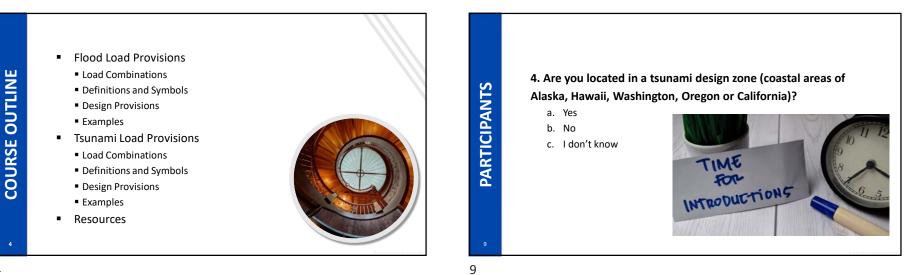


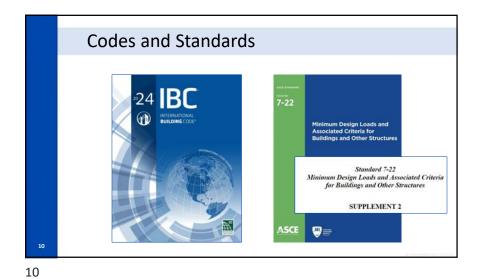


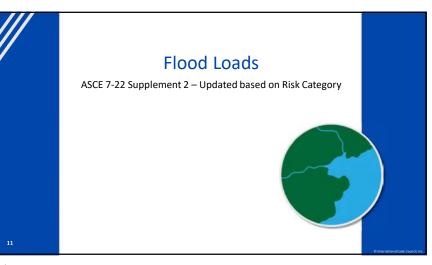
Alternative Diaphragm Design Provisions

Method and ASCE/SEI 7-22 Section	Number of Stories Permitted	Diaphragm Systems Included	Comments
Traditional Sections 12.10.1 and 12.10.2	Any	All	 Not permitted for precast concrete diaphragms in SDC C through F Diaphragm design forces are determined using seismic design parameters (R, Da, and C₄) for the vertical elements of the SFR:
Alternative Design Procedure Section 12.10.3	Any	Cast-in-place concrete Precast concrete Wood structural panel Bare steel deck Concrete-filled steel deck	Required for precent concrete diaphragms in SDC C through F, providing ingraround testinic performance Optional for other diaphragm types Batter reflects vertical distribution of diaphragm forces R. diaphragm design force reduction factor batter reflects effect of diaphragm ductility and displacement capacity on dia- phragm setsime. Forces Forces in collectors and their connections to vertical elements are annohiad by 1.5 in phase of Ds
Alternative RWFD Design Method Section 12.10.4	One Story	Wood structural panel Bare steel deck When meeting the scoping limitations of ASCE/SEI 7-22 Section 12.10.4.1	 Primarily intended for buildings with diaphragm spans of 100 feet or greater New T_{aut}, R_{aut}, D_{arbath}, and C_{sidual}, better reflect response of RWFD building type Provides better performance with the same or reduced construction cost

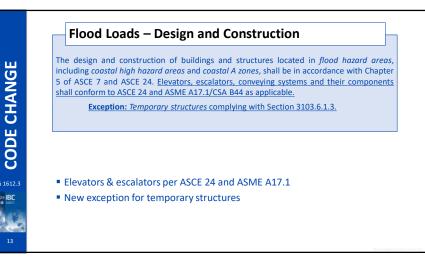
88

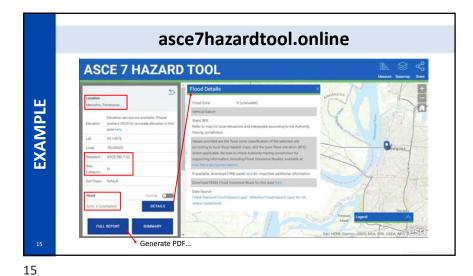

Copyright © 2024 International Code Council

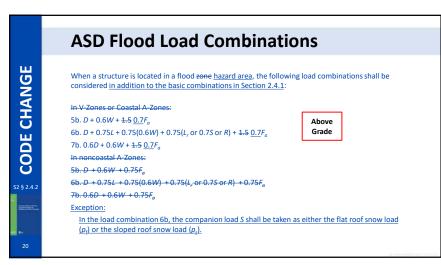


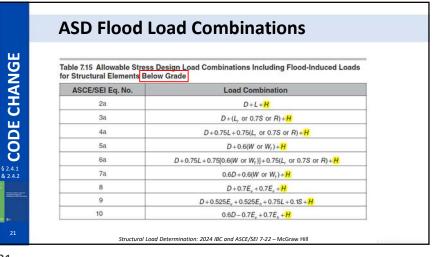


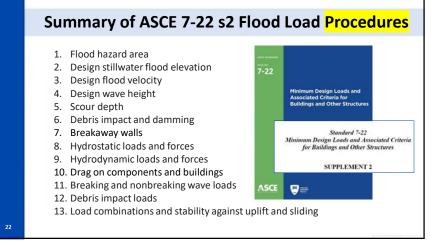


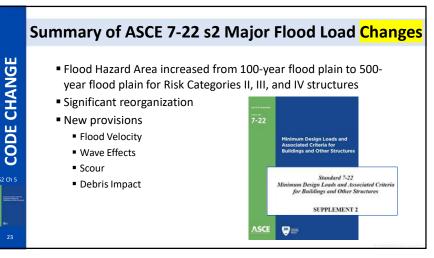

Flood and Tsunami Loads



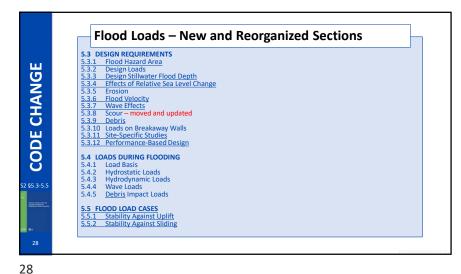


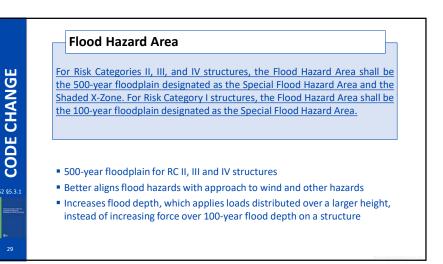

	Strength Design Flood Load Combinations
CHANGE	When a structure is located in a flood zone hazard area (Section 5.3.1), the following load combinations shall be considered in addition to the basic combinations in Section 2.3.1:
Ā	In V-Zones or Coastal A-Zones:
Ì	4b. $1.2D + 1.0W + \frac{2.0}{1.0}F_{o} + L + (0.5L_{r} \text{ or } 0.3S \text{ or } 0.5R)$
	5b. 0.9 <i>D</i> + 1.0 <u>0.5</u> <i>W</i> + 2.0 <i>F</i> _o Above Grade
CODE	In noncoastal A-Zones:
0	4b. 1.2D + 0.5W + 1.0F _g + L + (0.5L _r or 0.3S or 0.5R)
U	5b.0.9D + 0.5W + 1.0F _a
52 § 2.3.2	Exceptions: 1. The load factor on L in the combination 4b is permitted to equal 0.5 for all occupancies in which L ₂ in Chapter 4, Table 4.3-1 is less than or equal to 100 psf, with the exception of garages or areas occupied as places of public assembly.
	2. In the load combination 4b, the companion load S shall be taken as either the flat roof snow load (p ₂) or the sloped roof snow load (p ₂).
18	

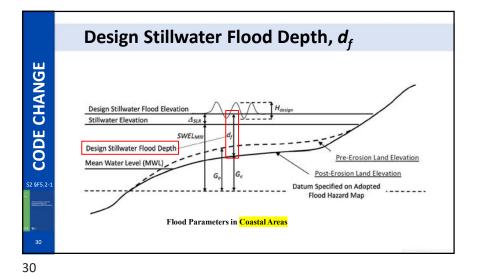

Strength Design Flood Load Combinations

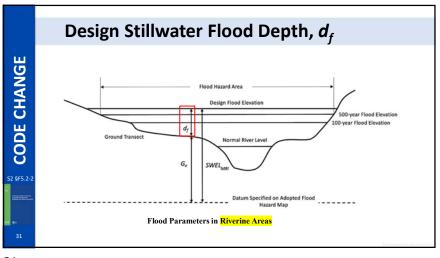

ASCE/SEI Eq. No.	Load Combination
2a	1.2D + 1.6(L + H) + (0.5L, or 0.3S or 0.5R)
3a	1.2D+(1.6L, or 1.0S or 1.6R)+(L or 0.5W)+1.6H
4a	$1.2D + 1.0(W \text{ or } W_{T}) + L + (0.5L, \text{ or } 0.3S \text{ or } 0.5R) + 1.6H$
5a	0.9D + 1.0(W or W ₇) + 1.6H
6	$1.2D + E_v + E_h + L + 0.15S + 1.6H$
7	$0.9D - E_v + E_h + 1.6H$

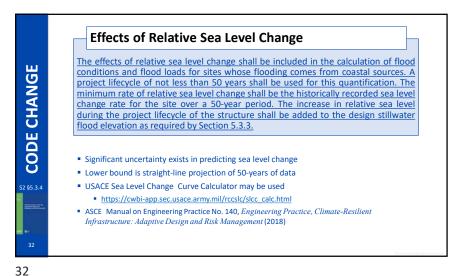
19

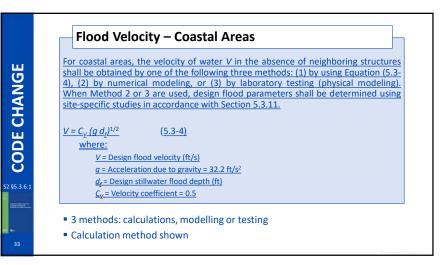






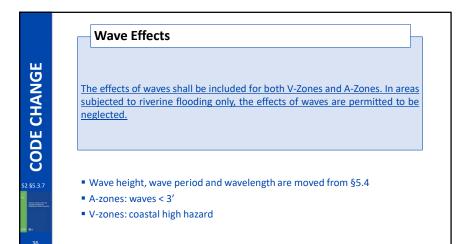


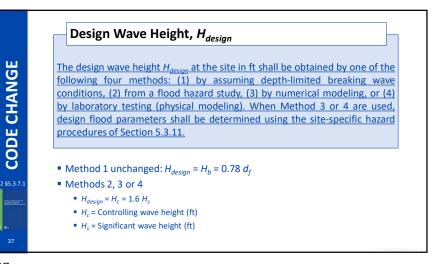


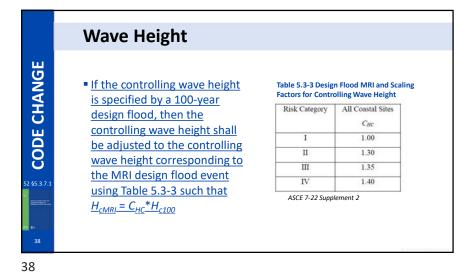

29

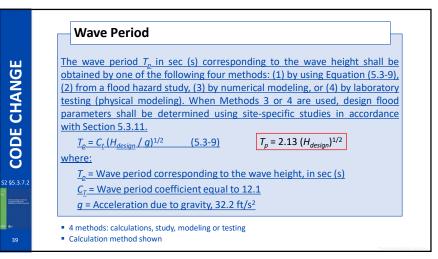
Copyright © 2024 International Code Council

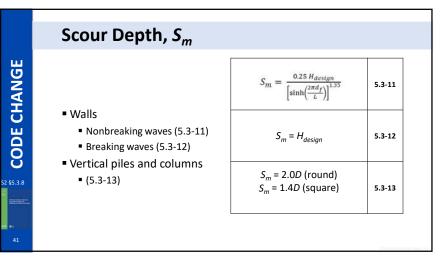


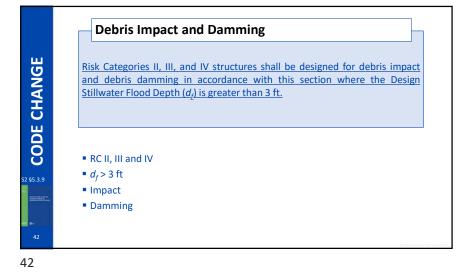


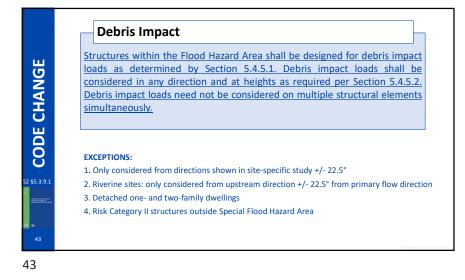





• The maximum velocity of water, V max for coastal areas need not be greater than CVMAX *10 ft/s, where CVMAX is the coefficient obtained from Table 5.3-2 used to scale to the maximum velocity Table 5.3-2. Design Flood MRI and Scaling Factors for Maximum Velocity x253.61 Table 5.3-2. Design Flood MRI and Scaling Factors for Maximum Velocity	Flood Velocity – Coas	tal Areas		
ASCE 7-22 Supplement 2	water, V_{max} for coastal areas need not be greater than C_{VMAX} *10 ft/s, where C_{VMAX} is the coefficient obtained from Table 5.3-2 used to scale to	Scaling Factors fo Risk Category I II III IV	r Maximum Velocity All Coastal Sites Crazer 1.00 1.35 1.45 1.50	V _{max} (ft/s) 10.0 13.5 14.5





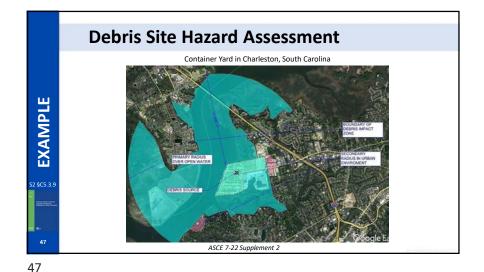


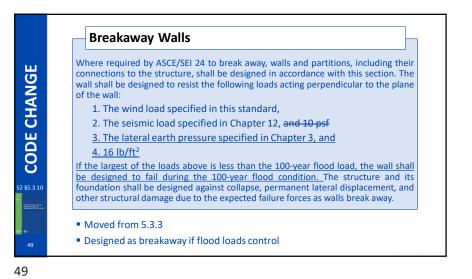
Wavelength • The wavelength, L, in ft shall be calculated by $L = \frac{gT_p^2}{2\pi} \left(1 - e^{-\left(\frac{2\pi}{T_p}\sqrt{\frac{d}{g}}\right)^{\frac{5}{2}}}\right)^{\frac{2}{5}}$ $L = \frac{gT_p^2}{2\pi} \left(1 - e^{-\left(\frac{2\pi}{T_p}\sqrt{\frac{d}{g}}\right)^{\frac{5}{2}}}\right)^{\frac{2}{5}}$ www.sengpielaudio.com/calculator-period.htm

D. L. T.				
Debris Type	Applicable Risk Categories	Threshold Depth (ft) ¹	Impact on columns, piles, bearing walls and transfer beams	Impact or non-load bearing elements
Passenger Vehicles	RC II/III/IV	3 ft (0.91 m)	Yes	Yes
Small Vessels	RC II/III/IV	3 ft (0.91 m)	Yes ³	Yes ³
Wood Poles	RC III/IV	3 ft (0.91 m)	Yes	Yes
Shipping Containers	RC III/IV	3 ft (0.91 m)	Yes ³	n/a
Ships/barges	RC III/IV	6 ft (1.8 m)	Yes ³	n/a
Extraordinary Debris ³	RC IV	12 ft (3.7 m)	Yes ³⁴	n/a

Site Hazard Assessment

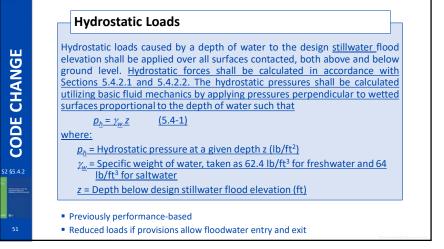
Debris Type	Travel distance in moderate density environment *	Travel distance in heavy density environment ¹
Small vessels	2,000 ft (604 m)	1,000 ft (304 m)
Shipping Containers	2,000 ft (604 m)	1,000 ft (304 m)
Ships/barges	1,000 ft (302 m)	500 ft (152 m)
Extraordinary debris	1,000 ft (302 m)	500 ft (152 m)
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

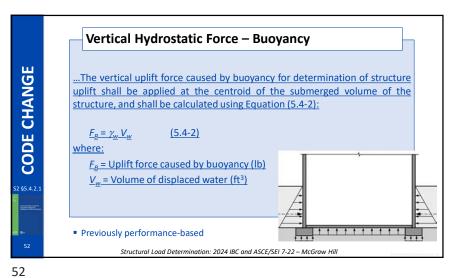

Heavy density environments are areas where the density of structures with a height of at least 75% of the design flood depth is greater than 30% of plan area within the Flood Hazard Area. All other areas shall be considered moderate density.

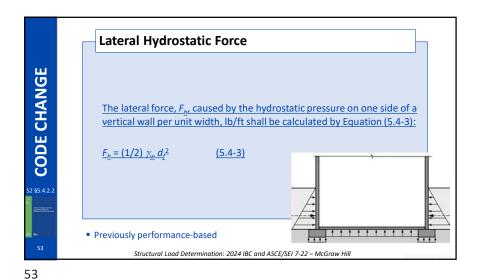

EXCEPTION: Debris impact loads from shipping containers, ships, and barges not required where

- Flood depth < debris object draft plus 2.0 ft</p>
- Debris object path blocked by structure/topography resulting in inadequate draft

CODE CHANGE






Hazard	Allowable Reduction with Peer Review	Allowable Reduction without Peer Review
Velocity, V	30%	20%
Wave height, H	30%	20%
Wave period, T	30%	20%

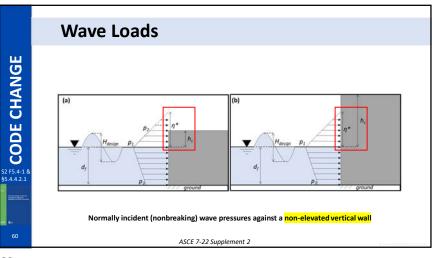
ASCE 7-22 Supplement 2

CODE CHANGE

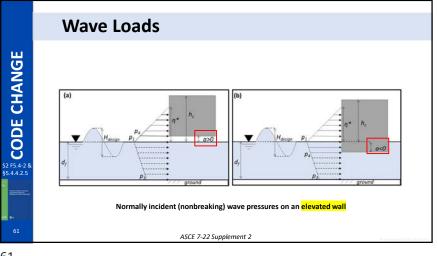
Drag Coefficients for Components Drag Coefficient, Cd Structural Element Section Round column or equilateral polygon with six sides or more 1.2 Rectangular column of at least 2:1 aspect ratio with longer face oriented 1.6 parallel to flow Free-standing wall submerged parallel to flow 1.6 Square or rectangular column with longer face oriented perpendicular to flow 2.0 2.0 Triangular column pointing away from flow Wall or flat plate, normal to flow 2.0 Diamond-shape column, pointed into the flow (based on face width, not 2.5 projected width) Rectangular beam, normal to flow 2.0 I, L, and channel shapes 2.0

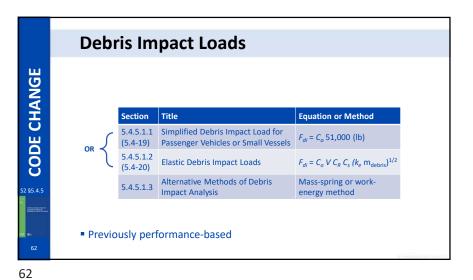
Structural components with debris damming per Section 5.3.9.2

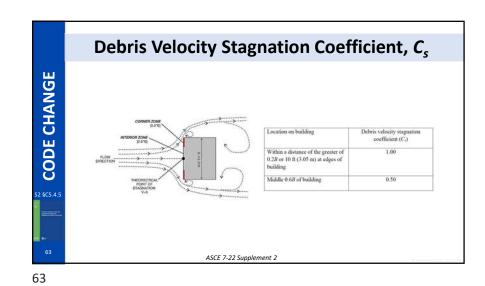
ASCE 7-22 Supplement 2


CODE CHANGE

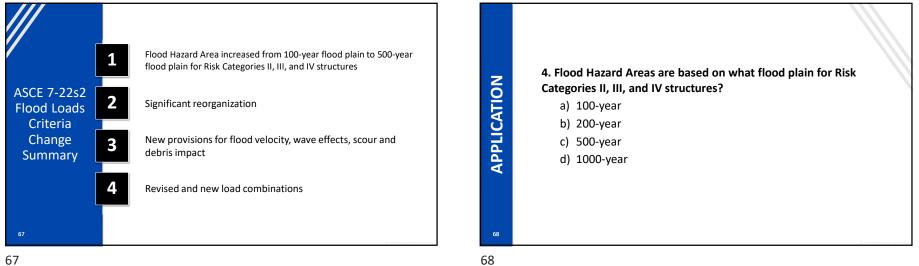
2.0

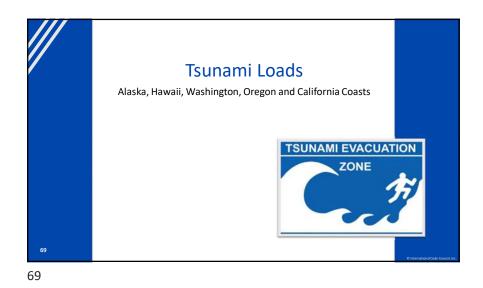

Drag Coefficients for Building	gs
	-
Ratio of structure width to design stillwater flood depth" B/d_f	Drag Coefficient, C.
≤12	1.25
≥ 120	2.0
*Linear interpolation shall be used for intermediate values of <i>b/d_f</i> . W occur, drag coefficients shall be determined for each portion of const	

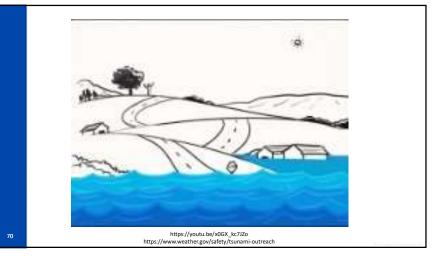

 5.4.4.1 Wave Loads on Vertical Piles and Columns 5.4.4.1.1 Nonbreaking Wave Loads on Vertical Piles and Columns 5.4.4.1.2 Breaking Wave Loads on Vertical Piles and Columns 5.4.4.2 Lateral Wave Loads on Walls 5.4.4.2.1 Lateral Nonbreaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.2 Lateral Breaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.3 Lateral Breaking Wave Loads on Nonvertical Walls 5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves 5.4.4.2.5 Lateral Wave Loads on Elevated Walls 	5.4.4 Wave L	pads
 5.4.4.1.2 Breaking Wave Loads on Vertical Piles and Columns 5.4.4.2 Lateral Wave Loads on Walls 5.4.4.2.1 Lateral Nonbreaking Wave Loads on Non-elevated Vertical Wal 5.4.4.2.2 Lateral Breaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.3 Lateral Breaking Wave Loads on Nonvertical Walls 5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves 	5.4.4.1 Wave	e Loads on Vertical Piles and Columns
 5.4.4.2 Lateral Wave Loads on Walls 5.4.4.2.1 Lateral Nonbreaking Wave Loads on Non-elevated Vertical Wall 5.4.4.2.2 Lateral Breaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.3 Lateral Breaking Wave Loads on Nonvertical Walls 5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves 	5.4.4.1.1	Nonbreaking Wave Loads on Vertical Piles and Columns
 5.4.4.2.1 Lateral Nonbreaking Wave Loads on Non-elevated Vertical Wal 5.4.4.2.2 Lateral Breaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.3 Lateral Breaking Wave Loads on Nonvertical Walls 5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves 	5.4.4.1.2	Breaking Wave Loads on Vertical Piles and Columns
 5.4.4.2.2 Lateral Breaking Wave Loads on Non-elevated Vertical Walls 5.4.4.2.3 Lateral Breaking Wave Loads on Nonvertical Walls 5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves 	5.4.4.2 Later	al Wave Loads on Walls
5.4.4.2.3Lateral Breaking Wave Loads on Nonvertical Walls5.4.4.2.4Lateral Breaking Wave Loads from Obliquely Incident Waves	5.4.4.2.1	Lateral Nonbreaking Wave Loads on Non-elevated Vertical Wal
5.4.4.2.4 Lateral Breaking Wave Loads from Obliquely Incident Waves	5.4.4.2.2	Lateral Breaking Wave Loads on Non-elevated Vertical Walls
	5.4.4.2.3	Lateral Breaking Wave Loads on Nonvertical Walls
5.4.4.2.5 Lateral Wave Loads on Elevated Walls	5.4.4.2.4	Lateral Breaking Wave Loads from Obliquely Incident Waves
	5.4.4.2.5	Lateral Wave Loads on Elevated Walls

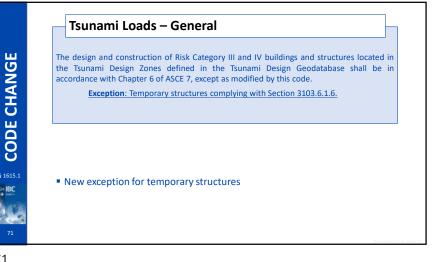

	Wave	e Loads		
ш	Section	Title	Equation	
В Z	5.4.4.1.1 (5.4-6)	Nonbreaking Wave Loads on Vertical Piles and Columns	$F_m = \phi_m C_D \chi_w H_{design}^2 D$	
HA	5.4.4.1.2 (5.4-7)	Breaking Wave Loads on Vertical Piles and Columns	$F_{bw} = \phi_m C_{bw} \chi_w H_{design}^2 D$	
CODE CHANGE	5.4.4.2.1 (5.4-12)	Lateral Nonbreaking Wave Loads on Non-elevated Vertical Walls	$F_{\tau} = \begin{cases} \left(\frac{1}{2}(p_1 + p_2)h_c + \frac{1}{2}(p_1 + p_3)d_f\right) \\ \left(\frac{1}{2}p_1(\eta^{\tau}) + \frac{1}{2}(p_1 + p_3)d_f\right) \end{cases}$	for $\eta' > h_c$ for $\eta' \le h_c$
00	5.4.4.2.2 (5.4-13)	Lateral Breaking Wave Loads on Non-elevated Vertical Walls	$F_{SRK} = \begin{cases} \left(\frac{1}{2}(p_{1B} + p_2)h_c + \frac{1}{2}(p_{1B} + p_3)d_f\right) \\ \left(\frac{1}{2}p_{1B}(\eta^*) + \frac{1}{2}(p_{1B} + p_3)d_f\right) \end{cases}$	for $\eta^* > h_c$ for $\eta^* \le h_c$
§5.4.4	5.4.4.2.3 (5.4-15)	Lateral Breaking Wave Loads on Nonvertical Walls	$F_{BNV} = F_{BRK} [\sin(\alpha_v)]^2$	
1000C.,	5.4.4.2.4 (5.4-16)	Lateral Breaking Wave Loads from Obliquely Incident Waves	$F_{BOI} = F_{BRK} [\sin(\alpha_H)]^2$	
59	5.4.4.2.5 (5.4-18)	Lateral Wave Loads on Elevated Walls	$F_{i} = \begin{cases} \left(\frac{1}{2}p_{4}(\eta^{*}-a)\right), \\ \left(\frac{1}{2}p_{1}\eta^{*}+\frac{1}{2}(p_{1}+p_{4})(a)\right), \end{cases}$	for $a \ge 0$ for $a < 0$

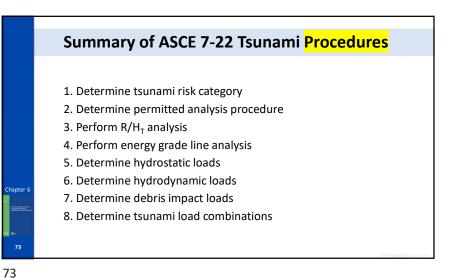
60



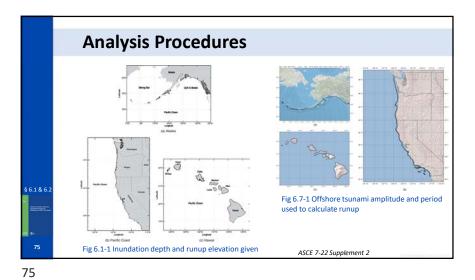

Debris Type	Minimum debris weight, lb (W _{debris})	Minimum elastic debris stiffness, lb/ft (k _e)	Strike Elevation Range, ft	Impact Area, f
Wood Log/Pole	1,000	4,200,000	3.0 AG to d _f	1.5 x 1.5
Passenger Vehicle	2,400	72,000	3.0 AG to (d _f – 1.0)	5 wide x 2 hig
Small Vessels	2,500	360,000	3.0 AG to (d _f + 3.0)	4 wide x 2 hig
20 ft Shipping Container	5,000	2,940,000		1.0 x 1.0
40 ft Shipping Container	8,400	2,040,000	3.0 AG to d _f	1.0 X 1.0
Ships/Barges		Established based	I on local conditions	
			AG = above grade	


	Stability Against Uplift
Ш	Structures shall be designed to resist flotation due to buoyancy forces as defined in Section 5.4.2.1. Uplift resistance shall be provided by satisfying Equation (5.5-1) with load factors as shown. This stability load combination is in addition to those in Chapter 2.
Ž	$\frac{0.9D_{SW} + R_{\underline{B}} + F_{\underline{B}} + 0.6W_{uplift} \ge 0}{(5.5-1)}$ where:
CODE CHANGE	D_{SW} = Self-weight of the structure or portion of structure being evaluated inclusive of permanent fixed elements and equipment (lb)
DE	$R_{\rm g}$ = Allowable uplift resisting capacity of structural foundation elements and/or other conditions resisting uplift (lb)
	F_{g} = Uplift force caused by buoyancy in lb, always taken as less than zero W_{uplift} = Maximum total vertical uplift wind load on the structure as defined in this standard (lb). Wind load shall not be used to counteract buoyancy and is always taken less than zero.
§5.5.1	
	In addition to Chapter 2 load combinations
65	 Buoyancy and wind uplift offset by dead loads and foundation elements


	Stability Against Sliding
	Sliding resistance shall be provided by satisfying Equation (5.5-2) with load factors as shown. This stability load combination is in addition to those in Chapter 2:
	$\frac{\mu(0.9D_{SW} + F_{B} + 0.6W_{uplit}) + H_{0} + R_{0} - H_{a} - F_{lateral} - 0.6W_{lateral} \ge 0 $ (5.5-2) where:
	μ = Coefficient of sliding friction at slip plane being considered between structure on shallow foundations and subgrade
	D _{SW} = Self-weight of the structure or portion of structure being evaluated inclusive of permanent fixed elements and equipment (lb)
	$E_{\rm g}$ = Uplift force caused by buoyancy (lb) always taken as less than zero
	W _{upilit} — Maximum total vertical uplift wind load on the structure as defined in this standard (lb). Wind load shall not be used to counteract buoyancy and is always taken less than zero
	H_p = Resultant force from passive lateral earth pressures (lb)
	<u>R_p = Allowable lateral resisting capacity of deep foundations, external structural foundation elements and/or other conditions resisting sliding (lb)</u>
	H _a = Resultant force from active lateral earth pressures (lb)
-	W _{lateral} = Maximum total lateral wind load on the structure as defined in this standard (lb)
	$F_{\text{lateral}} = Maximum \text{ lateral component of the flood load, } F_{ar}$ as determined in Section 5.5 (lb)
	In addition to Chapter 2 load combinations



67



Analysis Procedures

**PTHA required if inundation depth > 12 feet

Risk Category	Use or Occupancy
T	Buildings and other structures that represent a low risk to humans.
П	All buildings and other structures except those listed in risk categories I, III, and IV
ш	 Buildings and other structures the failure of which could pose a substantial risk to human life. Buildings and other structures with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure.
IV	 Buildings and other structures designated as essential facilities. Buildings and other structures, the failure of which could pose a substantial hazard to the community.

74

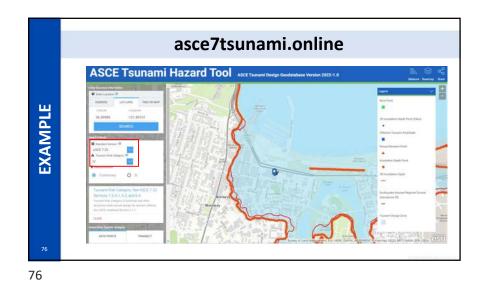
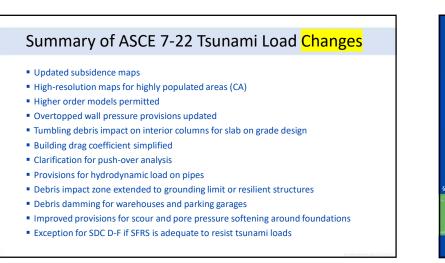
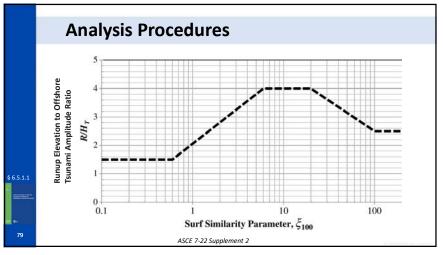
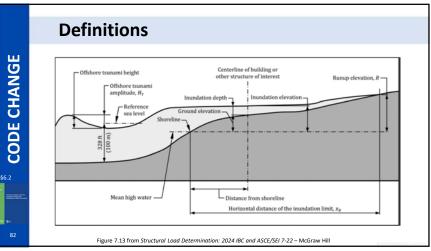


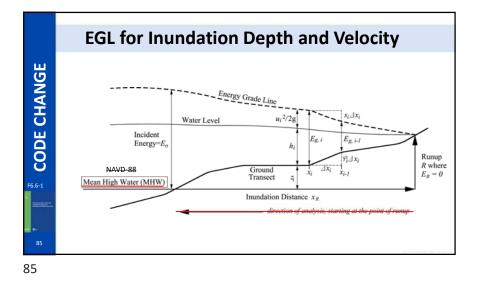
Table 7.18 Inundation Depth and Flow Velocity Analysis Procedures Where Runup Is Given in the Tsunami Design Zone Maps of ASCE/SEI Figure 6.1-1 Tsunami Risk Category (TRC) ١V **Analysis Procedure** 11 Ш Excluding TVERS TVERS R/H₇ analysis (ASCE/SEI Not permitted Not permitted Not permitted Not permitted 6.5.1.1) Energy grade line analysis (EGLA) [ASCE/SEI 6.6] Required Required Required" Required[®] Site-specific probabilistic tsunami hazard analysis Permitted" Permitted* Required Required" (PTHA) [ASCE/SEI 6.7] *NR if inundation depth is less than or equal to 3 ft and includes sea level rise

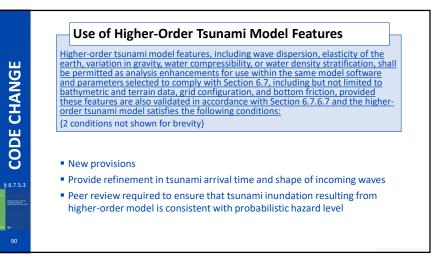
Structural Load Determination: 2024 IBC and ASCE/SEI 7-22 - McGraw Hill

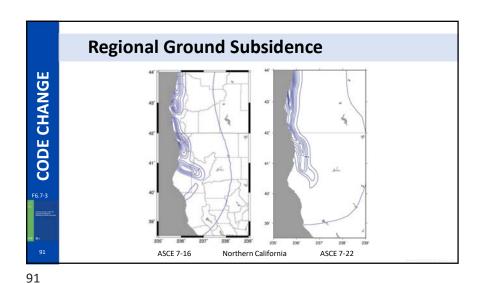

§ 6.5

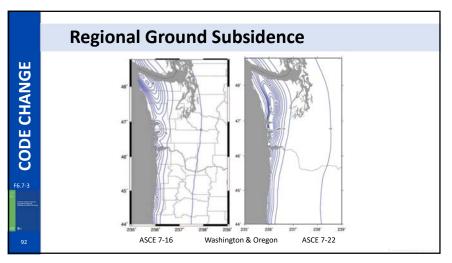

Copyright © 2024 International Code Council

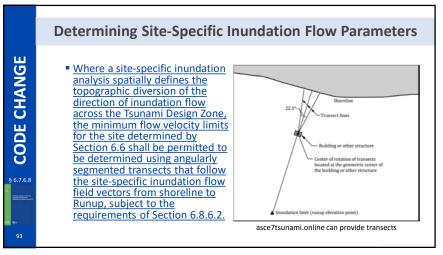

able 7.19 Inundation De		Velocity Analys	is Procedures Wh	ere Runup I
		Tsunami Ris	sk Category (TRC)
Analysis Procedure				IV
Analysis Procedure	II		Excluding TVERS	TVERS
R/H ₇ analysis (ASCE/SEI 6.5.1.1)	Required	Required	Not permitted	Not permitte
Energy grade line analysis (EGLA) [ASCE/SEI 6.6]	Required	Required*	Required	Required
Site-specific probabilistic tsunami hazard analysis (PTHA) [ASCE/SEI 6.7]	Permitted*	Permitted*	Required	Required

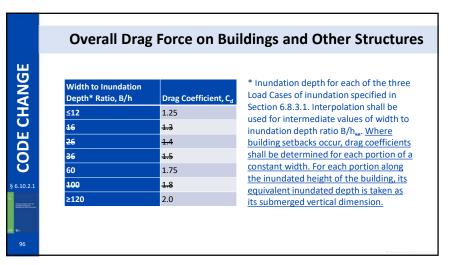

CODE CHANGE


80








Category III Critical Facilities

Category III Critical Facilities

exception to Section 6.5.2

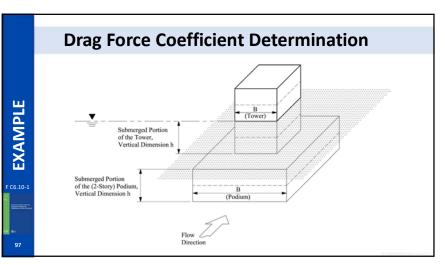
1.25

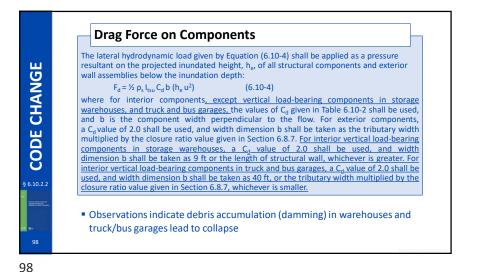
1.25

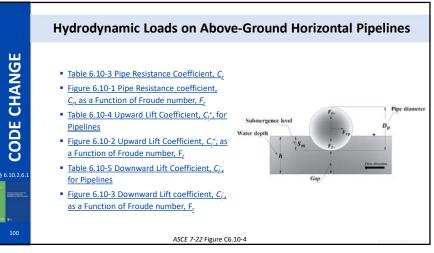
1.5

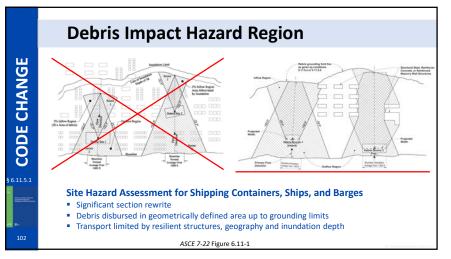
III, Tsunami Risk Category IV, Vertical Evacuation Refuges, and Tsunami Risk

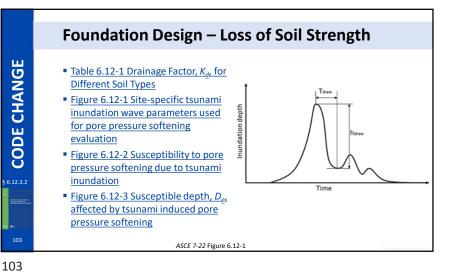
Tsunami Risk Category IV, Vertical Evacuation Refuges, and Tsunami Risk

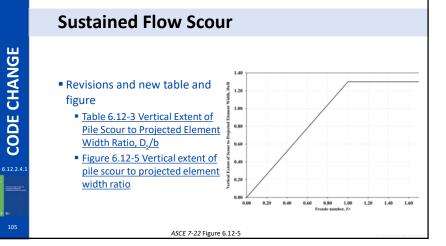

Tsunami Risk Category IV where the inundation depth is less than 12 ft and a

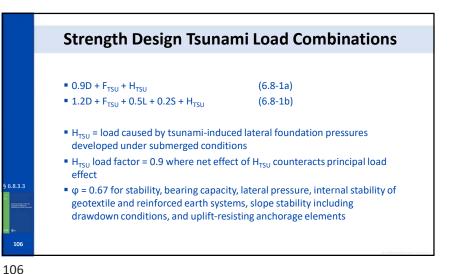

site-specific Probabilistic Tsunami Hazard Analysis is not performed, per the

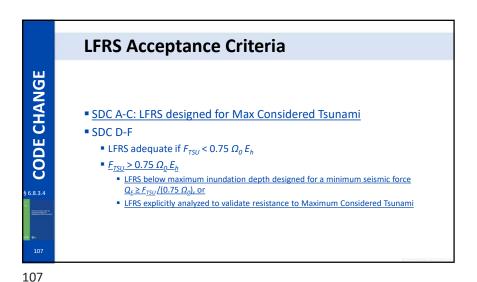

94

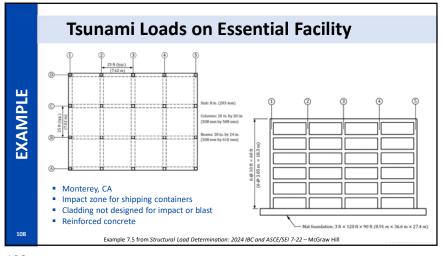

CODE CHANGE

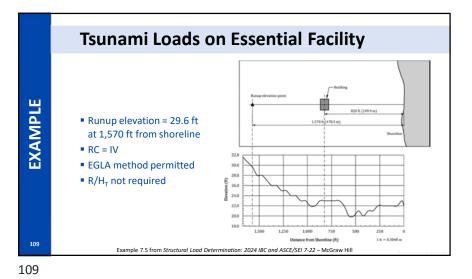

6.8-1

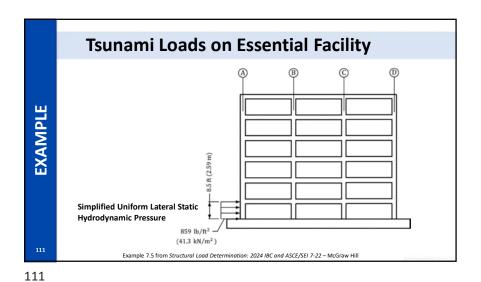


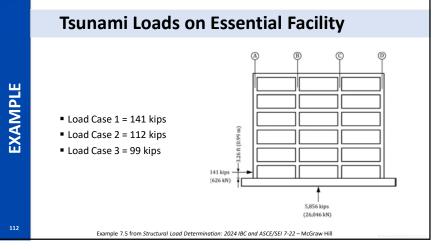


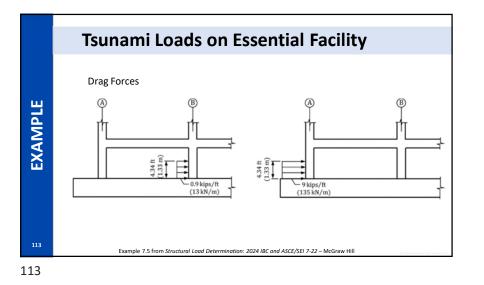


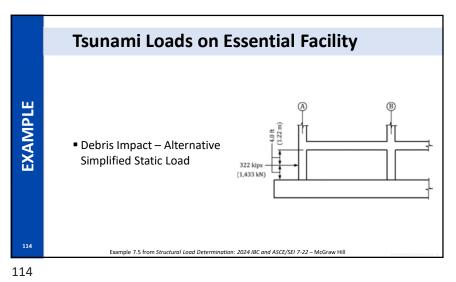


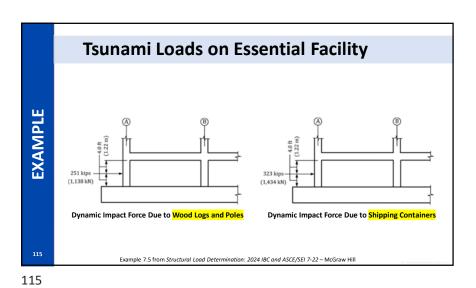


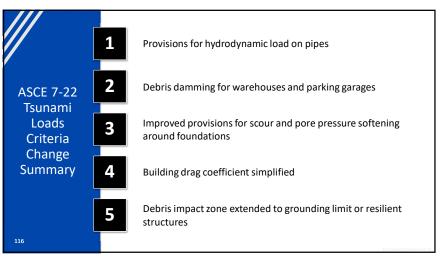


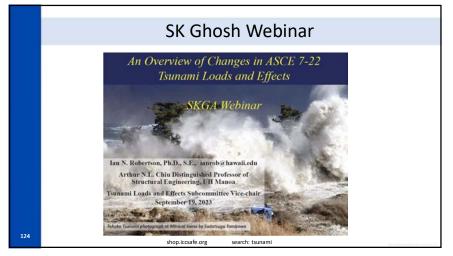


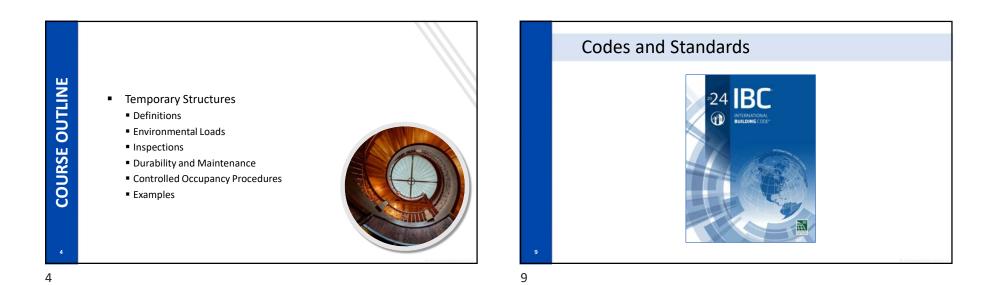

Copyright © 2024 International Code Council

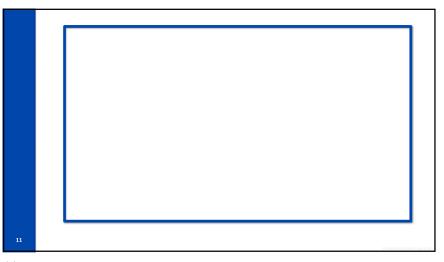


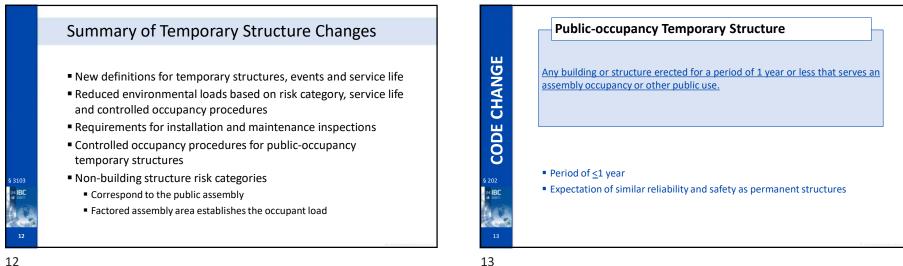

Isui	nami	Loa	as o	n Es	sser	ntial	Fac	ility	
Table	7.32 EGLA Calcul	ations for the Bu	ilding in Examp	le 7.5					
P	oint Distance from Shoreline, x, (ft)	Transect Elevation, z, (ft)	Topographic Slope, ø	Froude Number, F,	Friction Slope, s,	Topographic Slope, ¢.,m	Energy Head, E _g (ft)	Inundation Depth, h _i (ft)	Flow Velocity, u, (fb/s)
B	nup 1,570.0	29.6		0.000	0.000000		0.00	0.10	0.00
	1,520.0	28.0	0.0320	0,178	0.000896	0.0180	1.64	1.62	1.29
	1,470.0	28.0	0.0000	0.252	0.000708	0.0180	1.68	1.63	1.83
	1,420.0	27.0	0.0200	0,309	0.001060	0.0100	2.73	2.61	2.83
	1,370.0	26.0	0.0200	0.357	0.001208	0.0150	3.79	3.57	3.82
	5 1,320.0	26.0	0.0000	0.399	0.001360	0.0100	3.86	3.58	4.28
- C	1,270.0	25.0	0.0200	0.437	0.001631	0.0100	4.94	4.51	5.27
	7 1.220.0	25.0	0.0000	0,472	0.001761	0.0100	5.03	4.53	5.70
	1,170.0	24.0	0.0200	0.505	0.002010	0.0100	6.13	5.44	6.68
	1,120.0	24.0	0.0000	0.535	0.002127	0.0100	6.24	5.46	7.10
1	1,070.0	23.0	0.0200	0.564	0.002361	0.0100	7.36	6.35	8.07
	1,020.0	23.0	0.0000	0.592	0.002470	0.0100	7.48	6.36	8.47
	970.0	22.0	0.0200	0.618	0.002692	0.0000	8.61	7,23	9.45
1	920.0	22.0	0.0000	0.643	0.002795	0.0000	8.75	7.25	9.83
1	870.0	23.0	-0.0200	0.668	0.003007	-0.0050	7,90	6.46	12.19
- (1	5 820.0	23.0	0.0000	0.691	0.003348	-0.0050	8.07	6.51	12.67
	5 770.0	23.0	0.0000	0.714	0.003561	0.0000	8.25	6.57	10.39
1	720.0	23.0	0.0000	0.736	0.003772	0.0050	8.44	6.64	10.76
1	670.0	23.0	0.0000	0.757	0.003981	0.0150	8.64	6.71	11.13
1	620.0	22.0	0.0200	0.778	0.004187	0.0150	9.85	756	12.14

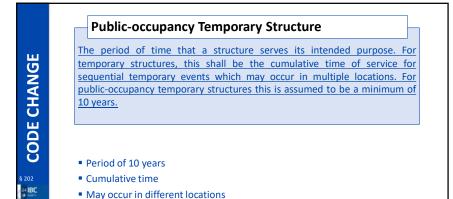


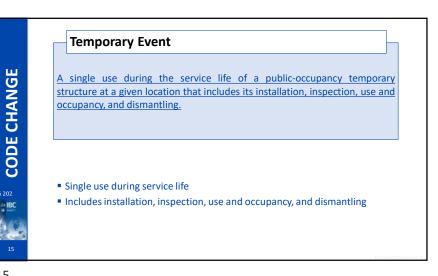


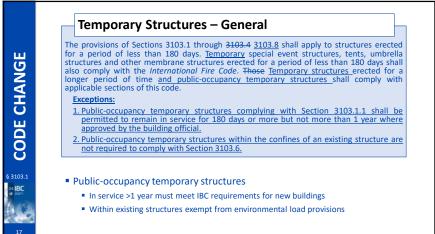








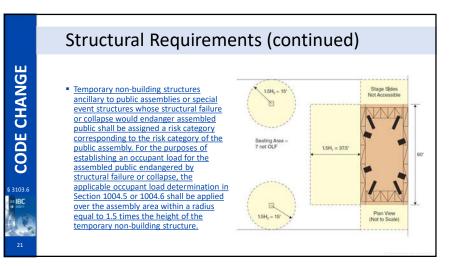


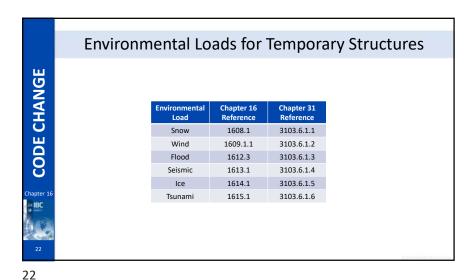

15

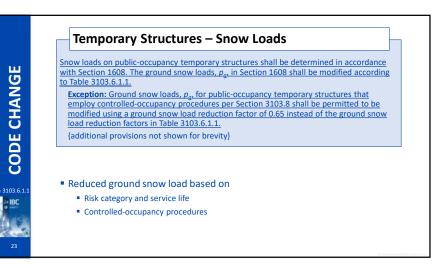
Temporary Structure

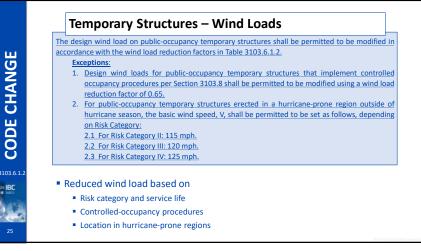
Any building or structure erected for a period of 180 days or less to support temporary events. Temporary structures include a range of structure types (public-occupancy temporary structures, temporary special event structures, tents, umbrellas and other membrane structures, relocatable buildings, temporary bleachers, etc.) for a range of purposes (storage, equipment protection, dining, workspace, assembly, etc.

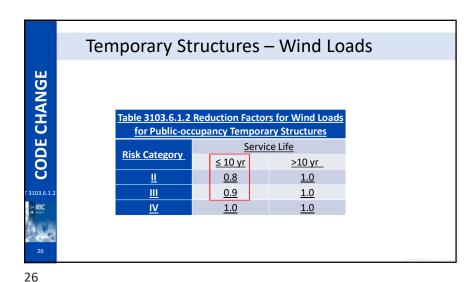
- Period of <180 days</p>
- Range of structures
- Range of purposes

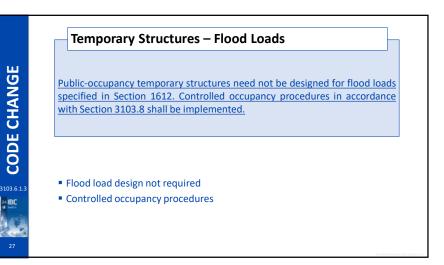



17


	Temporary Structures – General
CODE CHANGE	Public-occupancy temporary structures shall be permitted to remain in service for 180 days or more without complying with requirements in this code for new buildings or structures where extensions for up to 1 year are granted by the building official in accordance with Section 108.1 and where the following conditions are satisfied:
\$ 3103.1 BEC	 Additional inspections during installation Follow-up inspections after occupancy Design for environmental loads by RDP Relocation requires new permit Use or occupancy unchanged Extensions only as approved


	Structural Requirements
CODE CHANGE	Temporary structures shall comply with the structural requirements of this code. Public-occupancy temporary structures shall be designed and erected to comply with the structural requirements of this code and Sections 3103.6.1 through 3103.6.4. Exception : Where approved, live loads less than those prescribed by Table 1607.1 shall be permitted provided that a registered design professional demonstrates that a rational approach has been used and that such reductions are warranted.
\$ 3103.6 BC 20	RDP may design for reduced live loads



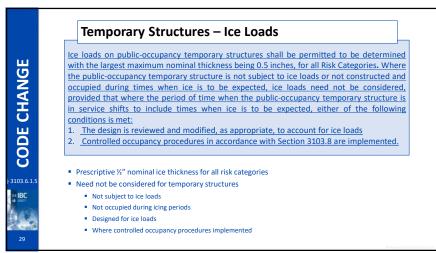


	Snow	/ Loads – Terr	۱p	orary	' S	tructure	S	
CODE CHANGE		Reduction Factors for Public-occupancy						
DE C		<u>Risk Category</u>			vic	<u>e Life</u>		
С С		<u> </u>		<u>≤ 10 yr</u> <u>0.7</u>		<u>>10 yr</u> <u>1.0</u>		
7 3103.6.1.1		ш		<u>0.8</u>		<u>1.0</u>		
24		<u>IV</u>		<u>1.0</u>		<u>1.0</u>		
24								

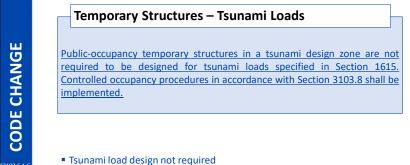
Temporary Structures – Seismic Loads

Seismic loads on public-occupancy temporary structures assigned to Seismic Design Categories C through F shall be permitted to be taken as 75% of those determined by Section 1613. Public-occupancy temporary structures assigned to Seismic Design Categories A and B need not be designed for seismic loads.

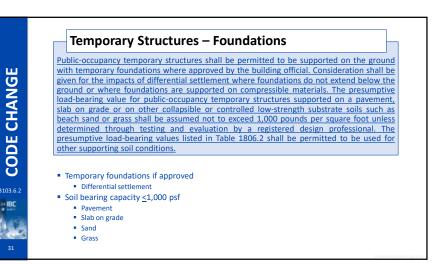
SDC C through F


75% of seismic design loads for permanent structures

SDC A and B – seismic design not required


28

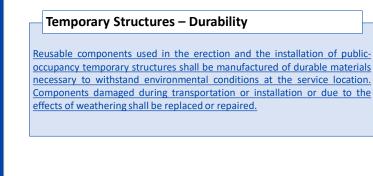
24 IBC


30

29

Controlled occupancy procedures

Temp Structures – Installation & Maintenance Inspections


A qualified person shall inspect public-occupancy temporary structures that are assembled using transportable and reusable materials. Components shall be inspected when purchased or acquired and at least once per year. The inspection shall evaluate individual components, and the fully assembled structure, to determine suitability for use based on the requirements in ESTA ANSI E1.21. Inspection records shall be kept and shall be made available for verification by the building official. Additionally, public-occupancy temporary structures shall be inspected at regular intervals when in service to ensure that the structure continues to perform as designed and initially erected.

- Qualified person to inspect public-occupancy temporary structures
- Components inspected once per year minimum
- ESTA ANSI E1.21 standard
- Inspection records available
- Public-occupancy temporary structures also inspected in service

32

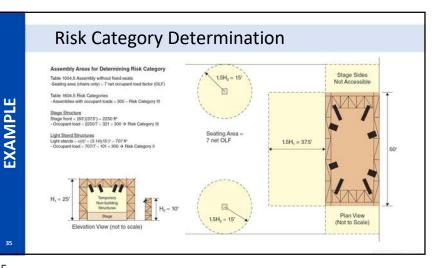
3103.8

34

- Reusable components made of durable materials
- Damaged components repaired or replaced

33

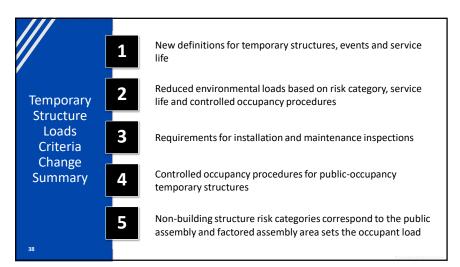
CODE CHANGE


IBC

Where controlled occupancy procedures are required to be implemented for public occupancy temporary structures in Section 3103.6.1, the procedures shall comply with this section and ANSI ES1.7. An operations management plan in accordance with ANSI E1.21 shall be submitted to the building official for approval as a part of the permit documents. In addition, the operations management plan shall include an emergency action plan that documents the following information, where applicable:


Monitor and remove excess snow or ice – vacate if loads are exceeded

Temporary Structures – Controlled Occupancy


- Monitor wind speeds vacate if loads are exceeded
- Evacuation procedures for flood and tsunami events
- Procedures for each environmental hazard
- Anchoring or removal of structure to mitigate hazards

Risk Category Assign	ment to P	oles	
Examples of Minimum Areas and Heig Non-Building Structures as Risk Categ			e Temporary
Assemblies without fixed seats	Occupant Load Factor (Table 1004.5)	Area** (ft ²)	Pole Height (ft)
Standing space	5	>1500	>14.57
Concentrated (chairs only-not fixed)	7	>2100	>17.24
Unconcentrated (tables and chairs)	15	>4500	>25.24

