Existing Sewer Lateral Pipe Repair Using Trenchless Methodology

Prepared by:
NASSCO Lateral Committee

NASSCO

• Who is NASSCO
Introduction

• Trenchless Methodology
• Codes and standards related to the repair of existing house sewers or lateral pipes
• Legal issues surrounding private property and impact on public utilities
• Selection of materials and technology
• Design, specification and procurement
• Effectiveness of methods

Service Laterals

• Nomenclature:
 • Service Laterals
 • Building Sewers
 • Building Drains
• Over 76 million sewer laterals in USA
• Lateral piping from 4” to 6” in diameter
• ~3.8 billion feet of lateral piping
• All types of pipe material
 • Cast iron, clay, AC, Orangeburg, PVC

Trenchless Methodology

• Grout
• Pipe Bursting
• Cured In Place Pipe (CIPP)
• Main Line Connection Seal
Grout

- Chemical Grouts
 - Chemical catalyst
 - Water activated
 - Application and Use

Lateral Grouting After Mainline Lining

Lateral Grouting – Push Type

- Access through cleanout
- Grouting along lateral
- Partial or full length
Lateral Tap Connection Grouting

- Mainline diameters from 6”–30”
- Effective sealing distances from 8” through 30 feet
- Diameter of laterals 4”, 5” or 6”

Pipe Replacement

- Pipe Bursting
- Application and Use
- Replacement Pipe

Lateral Bursting

- Lateral upsizing is desired
- Badly damaged laterals
- Replaces existing lateral with new pipe
Cured-In-Place Pipe Technology

• Invented in 1971 for use in mainline sewers
• Introduction to USA in 1976
• Over 300,000,000 feet of pipe repaired with CIPP

A textile (fabric or tube) impregnated by a thermosetting resin is inserted (pulled or inverted using air or water) into an existing pipe, expanded and cured (ambient, hot water, steam or light) to form a new pipe within the existing pipe without excavation, or at least minimal excavation to gain access to the existing pipe.

Lateral Lining Systems

• Proven technology
• New technologies and methods of installation
• Documented successes
• Less disruption
 • Infrastructure
 • Business / Residents

Purpose of Lateral Lining

• Rehabilitate service lateral pipe to various lengths
• Provide a watertight seal solution to eliminate leaks from the lateral pipe and remove I/I from entering the public sewer
• Increase service life of critical asset to its Owner
Application

- Service Laterals or Building Sewers
- Building Drains
- Vents
- Connection to Public Sewers

Alternatives / Selection

- Sectional Pipe Lining
- Lateral Pipe Lining
- Control Leakage
- Watertight
- Structural
- Reduce infiltration entering public sewer
- Extended service life of the existing pipe

Application Variables

- Access – Physical and Legal
- Diameters from 2” to 10”
- Multiple bends
- Diameter changes
- Offset joints
- Cracks
- Deposits
- Roots
- Connection to public sewer
Materials

- Resin systems
- Liner/tube or fabric

Liner Tubes or Fabric

- Various types
 - Fiberglass fabric
 - Felt
 - Woven
- Applications
 - Straight pipe
 - Bends
 - Single point or sectional repair
 - Vertical installation

Resins

- Polyester
- Epoxy
- Vinyl ester
- Silicate
Installation Methods

- CIPP
 - Pull or Push in Place
 - Inversion
- Grouts
- Pipe Bursting

Curing Methods

- Ambient
- Hot water
- Steam
- Hot air
- Light – UV and LED

Pre-Lining Process

- Access
- Inspection
- Cleaning
- Repairs
Lateral Rehab Evaluation

- Review CCTV inspection videos – PACP
- Determine extents of defects and deterioration
- Identify location and extents of spot repairs
- Determine service sizes, material, depth, number of service connections (open/capped)
- Evaluate lateral ownership

Inspection – Pan & Tilt

- Mainline sewer CCTV camera with pan & tilt
- Inspection performed from mainline sewer
- No cleanout/access point needed
- Can typically only see up a few feet

Inspection - Push

- Insert camera through cleanout or other access point
- Distance up to 150 ft
Inspection - Lateral Launch
• Launch camera from the mainline sewer
• No cleanout/access point needed
• Can traverse 80+ feet

Lateral Cleaning
• Lateral cleaning techniques have improved
• Up to 80+ feet from mainline sewer
• Done with or without a cleanout/access point

Cleaning from Mainline
Lateral Cleaning

Pre-cleaning

Post-cleaning

Sectional Pipe Repair

• Repair is needed in specific locations of a pipe vs entire length
• Repair is required as prerequisite to lining entire length of pipe

Installation Process

• Installation Methods
 • Pull in place
 • Push in place
 • Inversion
• Access
• Materials
• Purpose
Lateral Rehabilitation

- Full length lateral lining
- Connection seal to public sewer

Lateral Pipe Lining

- Double inversion method
- Single inversion method
- Pull-in-place method
- Clean-out inversion method

Main/Lateral Connection Lining

- Sealing the connection between lateral pipe and the public sewer
- Brim Style Connection Lining
- Full Circle Style Connection Lining
Lateral and Main/Lateral Connection Lining
- Pull in place
- Inversion
- Two-step method

Lateral Connection Seal
- Rehabilitates lateral connection to mainline sewer
- Extends 24” – 36” into service lateral
- Installation performed from the mainline sewer
- Does not require cleanout/other access point
- Brim-Style or Full-Wrap in the main

Full Length Lateral Lining
- Installed from mainline sewer or cleanout/other access point
- Extends various lengths and up to 4” cast iron from property
- Can seal connection to the mainline – installed from mainline
- Some products require a cleanout/other access point
Connection Liner or Full-Length Liner

- Distance up lateral needed for rehabilitation
- Goals of the program
 - Consent order driven
 - Structural issues
 - Infiltration issues
- Access - do cleanouts exist
 - Work on private property
 - Product limitations
- Ownership
- Available funding
- Location of groundwater table
 - Can help determine how far up the lateral to line

Installation and Sealing Properties

- Hydrophilic End Seals
 - Gasket
 - Paste
- Physical Bonding
 - Resin Migration
 - Epoxy Bond

Installation and Sealing Properties

- Often a contentious issue
- Opinions vary widely
- Installation
 - Inversion method – resin migration
 - Inflation/Packer system – mechanical bond
Codes and Standards

- IPC
- UPC
- ICC-ES
- NSF 14 SE
- IAPMO
- ASTM F1216
- ASTM F2561
- ASTM F3240
- ASTM F2599
- ASTM F1743

ASTM Standards

- Primary Standards for CIPP
 - ASTM F1216
 - ASTM F1743
- Standards for Lateral Rehabilitation
 - ASTM F2561
 - ASTM F3240
- Standards for Point/Sectional Repair
 - ASTM F2599
- Standards in Development

Certification Entities

- ICC-ES
 - ICC-ES LC1011 – Rehabilitation of Existing Building Drains and Building Sewers
- NSF
 - NSF-14 SE 13004 – Rehabilitation for Small Diameter Pipes
 - NSF-14 SE 10990 – Rehabilitation by Point Repair of Existing Pipe
- IAPMO
 - IGC 321
Resources

- NASSCO – NASSCO.org
 - Overview of Lateral and Main/Lateral Connection Lining and Sealing Technologies
 - Tech Tips and Specification Guidelines
 - Certification and Training courses for inspection
- NASTT – nastt.org
- ASCE – UESI Pipelines Infrastructure
 - Manuals of Practice
- WERF Studies
 - Methods for Cost-Effective Rehabilitation of Private Lateral Sewers
- Other

International Plumbing Code

- ICC Code Development
- Existing Code 2018
 - Section 105.2 – Alternative Materials
 - ICC-ES LC1011 – Rehabilitation of Existing Building Drains and Building Sewers
 - NSF SE 13004 – Rehabilitation for Small Diameter Pipes
- 2021 - Section 717 – Relining Building Sewers and Building Drains

Uniform Plumbing Code

- IAPMO Code Development
- Existing Code 2018
 - Section 301 – Alternative Materials
 - Section 715.3 – Existing Sewers
 - IAPMO IGC 321
 - NSF SE 13004 – Rehabilitation for Small Diameter Pipes
 - 2021 - Section 715.3 – Existing Sewers
Quality Assurance / Quality Control Practices

• Material qualification
• Pre-installation process inspection
• Installation process inspection
• Post-installation inspection

Challenges & Solutions

• Evaluating application specification and conformance to relevant Code
• Addressing installation issues
• Resolving post-installation defects

Future Outlook

• Education opportunities
• Awareness
• Code development