2024 IECC Residential Cost Effectiveness Analysis Proposal

This proposal is similar to the 2015 DOE cost analysis methodology for evaluating cost-effectiveness of residential energy code changes¹, but it uses updated sources for some parameters and is simplified to ease the burden for proponents to analyze their proposed amendments. The methodology and input parameters described here have been integrated into an accompanying calculator tool that produces the results.

The proposed methodology uses a lifecycle cost (LCC) approach, where the cashflows over an analysis period for cash outflows (expenses, negative values) and inflows (savings, positive values) are used to calculate a net present value based on the time value of money. A positive LCC value indicates that the savings of a measure exceed its costs over the analysis period, while a negative value indicates the opposite.

For costs, the proposed methodology assumes that any up-front incremental costs are financed through the mortgage on the home. Most proposed code amendments will predominantly impact new construction, and most new homes are financed through a 30-year mortgage. The mortgage terms from the DOE National Cost Effectiveness of the Residential Provisions of the 2021 IECC² were used, with an updated mortgage interest rate.

In the calculator, the LCC is calculated with, and results are provided for, three different discount rates. A February 15, 2022 memo³ from the ICC directed the code development committees to use the 3% and 7% real discount rates from 2003 U.S. Office of Management and Budget circular A-4⁴ in cost-effectiveness calculations. The ICC memo also stated that "these rates are currently used to support the statutory review DOE conducts upon release of a new edition of the IECC." The DOE methodology for evaluating cost-effectiveness of residential energy code changes does not use the OMB discount rates, but rather considers the 30-year mortgage rate as the appropriate discount rate for evaluating IECC residential measures⁵:

Because DOE's economic perspective is that of a homeowner, that time value is determined primarily by the owner's best alternative investment at similar risk to the energy features being considered—in this case a typical homeowner who holds a home throughout a 30-year mortgage term. DOE sets the discount rate equal to the mortgage

¹ Methodology for Evaluating Cost-Effectiveness of Residential Energy Code Changes, Pacific Northwest National Laboratory, 2015, https://www.energycodes.gov/sites/default/files/2021-07/residential_methodology_2015.pdf

² Salcedo et al, National Cost Effectiveness of the Residential Provisions of the 2021 IECC https://www.energycodes.gov/sites/default/files/2021-07/2021IECC_CostEffectiveness_Final_Residential.pdf

³ https://cdn-www-v2.iccsafe.org/wp-content/uploads/IECC-Discount-Rates-and-Code-Content-Memorandum 02 15.22.pdf

⁴ https://www.whitehouse.gov/wp-content/uploads/legacy_drupal_files/omb/circulars/A4/a-4.pdf

⁵ Methodology for Evaluating Cost-Effectiveness of Residential Energy Code Changes, Pacific Northwest National Laboratory, 2015, https://www.energycodes.gov/sites/default/files/2021-07/residential_methodology_2015.pdf

interest rate in nominal terms. Because mortgage prepayment is an investment available to consumers who purchase homes using financing, the mortgage interest rate is a reasonable estimate of a consumer's alternative investment rate.

The calculator tool therefore provides results at the 3% and 7% real OMB discount rates, as well as a 3.84% nominal discount rate, which is equal to the average 30-year mortgage rate over the past five years. The 2015 DOE cost analysis methodology sets the discount rate equal to the 30-year mortgage rate.

Given the high standard deductible for federal income taxes (\$25,900 for joint filers), it is assumed that the increase in mortgage payments does not result in a change in income taxes. It is also assumed that proposed measures have a minimal impact on property assessments for local taxes, so changes in property taxes are assumed to be zero. Property tax assessments tend to be based on high-level data points, such as floor area, general condition, location, number of bedrooms and bathrooms, presence of air conditioning, and types of wall and floor finishes. It is not clear that the cost of efficiency-related features will result in an identical increase in property-tax valuation, and the DOE methodology document provides no supporting evidence for the assumption that it will.

Estimates of measure costs should be clearly documented and adhere to accepted practices. Potential sources include recent published studies, surveys of retailer prices, RS Means residential cost data, and expert judgement. Cost estimates should be regionalized when appropriate. For measures that have an expected life of less than the 30-year analysis period, a cost for replacement should be assigned to the expected year this will occur.

For savings, the reduced or increased energy consumption produced by building energy modeling or other calculations are used to calculate annual changes in energy costs based on forecasted energy prices. Energy consumption calculations should be documented and reflect standard accepted practices. Change in energy consumption should be calculated for each climate zone unless it can be demonstrated that climate does not substantially impact savings. Cost-effectiveness can then be calculated for each climate zone. If needed, an overall cost effectiveness can then be calculated by weighting the results appropriately for each climate zone. The social cost of avoided carbon emissions can be included in the savings. It is calculated using EIA emissions factors and the cost data from the Interagency Working Group on Social Cost of Greenhouse Gases.

Electricity and natural gas, and optionally propane, should be represented proportionately to their expected use as a heating fuel in the area under study. For measures that have an expected life of less than the 30-year analysis period, the residual value of the replacement measure is assigned as a positive cashflow in year 30 based on a straight-line depreciation. Changes in non-energy operating costs, such as increased or decreased maintenance associated with a measure are not included unless they are deemed significant for a particular measure.

Energy prices used to calculate savings are based on national averages of projected prices. The use of regional prices was investigated, but overlaying EIA regional prices onto IECC climate zones, which have substantially different borders, adds a significant increase in difficulty.

The following table summarizes the parameters needed for the LCC modeling and their sources:

Parameter	Value	Source
Mortgage Interest Rate	3.84% nominal	FreddieMac, 5 year average ⁶
Loan Term	30 years	DOE 2021 Cost Effectiveness Analysis
Down Payment Rate	12%	DOE 2021 Cost Effectiveness Analysis
Points and Loan Fees	1%	DOE 2021 Cost Effectiveness Analysis
Discount Rates	3.84% nominal	30 Year mortgage rate
	7% real	2003 OMB Circular A-4 ⁷
	3% real	2003 OMB Circular A-4
Period of Analysis	30 years	
Property Tax Rate	Not used	
Income Tax Rate	Not used	
Home Price Escalation Rate	Not used	
Inflation Rate	2.3%	EIA AEO 2021 ⁸
Residual value	0 for measures with	
	life >= 30 years,	
	straight line	
	depreciation for	
	measures replaced	
	within 30 years	
Initial fuel prices	Elec: 0.1372 \$/kWh	Electricity: 2021 US residential price
	Gas: 1.1803 \$/therm	from EIA electric power monthly ⁹
	Propane: 2.48 \$/gal	Natural gas: 2021 US residential price
		from EIA natural gas annual ¹⁰
		Propane: Average 2021 EIA monthly
		residential heating season price. 11
Fuel price escalators	Elec: -0.1%	EIA AEO 2021 reference case,
	Gas: 0.5%	residential by fuel, national ¹²
	Propane: 1.4%	

⁶ http://www.freddiemac.com/pmms/

https://www.whitehouse.gov/wp-content/uploads/legacy_drupal_files/omb/circulars/A4/a-4.pdf

⁸ https://www.eia.gov/outlooks/aeo/excel/aeotab_20.xlsx

⁹ https://www.eia.gov/electricity/monthly/epm table grapher.php?t=table 5 03

¹⁰ https://www.eia.gov/dnav/ng/ng pri sum a EPGO PRS DMcf a.htm,

https://www.eia.gov/totalenergy/data/monthly/pdf/sec12 5.pdf

¹¹ https://www.eia.gov/dnav/pet/pet pri wfr dcus nus m.htm

¹² https://www.eia.gov/outlooks/aeo/excel/aeotab 3.xlsx

First cost for measures		Sources must be documented. (Potential sources include recent published studies, surveys of retailer prices, RS Means residential cost data, expert judgement.)
Change in energy consumption		Sources must be documented.
as compared to baseline		Building energy modeling or other
		calculations that use standard
		accepted practices. Calculated for
		each climate zone unless it does not
		substantially impact savings.
Changes in non-energy	Assumed to be zero	
operating expenses	unless warranted for	
	a specific measure	
Social cost of carbon	\$51 per metric ton in	Interagency Working Group on Social
	2020 (@3% real	Cost of Greenhouse Gases ¹³
	discount rate)	

 $[\]frac{\text{13 https://www.whitehouse.gov/wp-}}{\text{content/uploads/2021/02/TechnicalSupportDocument SocialCostofCarbonMethaneNitrousOxide.pdf}}$