

# What to Look for When Conducting Plan Reviews and Inspections of Solar PV

**Presenter: Rudy Saporite** 

Tuesday, September 12, 2017

9:45 AM - 11:15 AM











#### **MAIN COMPONENTS**



#### **Modules**

Often called "Panels, Modules, or Collectors" the commonly known "Flat plate collector" type of Solar PV module is typically made up of individual Silicon cells arranged in rows laminated between a tempered glass and EVA or membrane type backsheet, mounted within an aluminum or metal frame.

#### Inverter(s)



**Micro Inverter, String Inverter, String Inverter w/ DC Power Optimizers –** Whether Module Level Power Electronics (MLPE) are utilized, or in a separate location via a string type inverter... DC power is converted to AC by an "**Inverter**".



#### Racking

Two main types of racking are used and can generally be categorized into **traditional** and those including **integrated ground** attachments for attaching modules. Most have manufacturers recommendations for installation in order to meet the listing of the equipment that must be followed to ensure proper operation.



#### **Balance of System (BOS) Components**

**Balance of System** components are things such as combiner boxes, rapid shutdown equipment, breakers/fuses/disconnects, solar tracking equipment, flashing, or any other equipment that is installed to allow the PV system to integrate and operate as designed.

© 2017 Institute for Building Technology and Safety



## **MODULES**

## **Module Specifics:**

**Materials:** Aluminum frame, tempered glass, EVA or similar backsheet, poly or monocrystalline cells, aluminum or copper conductors, ABS or similar connectors.

Mono/Poly Crystalline – Individual "Cell" construction. Mono is a single cell made from a single silicon wafer. Poly means the "cells" are made up of many smaller silicon pieces pressed together. (Polycrystalline cells have an "OSB" look to them)

#### **Typical Configuration:**

- 60 Cells (ranging from sub 200W to just over 300W)
- 72 Cells (generally 300W+)
- Cells arranged flat and encapsulated in top and backsheet.
- "Panel" on back of module with (+) and (-) leads having male and female "plug" type connectors.
- DC Output (Note: AC Modules)



#### **INVERTERS**

#### **Inverter Specifics:**

- Convert DC power input to AC power output by matching the frequency/wattage/voltage of utility. (UL 1741 Compliance Required)
- Micro Inverter
  - Often 1 per module but newer models allow for multiple.
  - Branch Circuit circuit or chain of micro-inverters.
  - Attached to or mounted beneath PV modules.
  - Module Level Power Electronics (MLPE)
  - NEC 690.12 Rapid shutdown compliant
- String (Central) Inverter
  - Single inverter with inputs for multiple "strings" of PV modules.
  - Usually mounted ground level or indoors.
  - Integrated DC disconnect for all system source circuits with one single output.
  - Often times coupled with DC power optimizers (MLPE for string inverters)
- Transformerless (ungrounded) vs Transformer (grounded).

© 2017 Institute for Building Technology and Safety



## **RACKING**

## **Racking Specifics:**

**Integrated grounding** – Utilizes specifically designed attachments to create bonds and when installed to manufacturer specifications, acts as sufficient ground path bonding the modules to the EGC.

Traditional – Uses WEEBS or other module level attachments to achieve grounding.

#### Things to know:

- Structurally attached to roof or footing in the case of ground mount.
- Main support for system components.
- Has specific manufacturer requirements for installation to ensure bonding.
- Must show compliance with UL 2703
  - Specific height and spacing requirements based on fire classification.
  - Specific component classes



## **BALANCE OF SYSTEM (BOS)**

## **BOS Specifics:**

#### **Types**

- **Combiners:** used to combine multiple strings before transition to inverter.
- Panelboards: branch circuit panel, subpanel, point of interconnection, etc.
- Disconnects: visible blade, fused, remote or rooftop
- Monitoring: production meter, proprietary hardware
- **Protection**: nuisance protection or netting, fencing.

#### Things to know:

- Components have specific installation instructions to match listing and ensure protection.
- Many components exist and some mitigate deficiencies better than others... good to research.
- Components can be newly created to address an existing issue.











## **COMMON GROUNDING METHODS**

- **LUGS**
- ▶ WEEBS- Stainless steel spacers with teeth for bonding aluminum components.
- ► INTEGRATED- Components designed to be grounded by mechanical fastening during installation process.



## SYSTEM GROUNDING



10-15% deficiency rate

- WEEB not properly seated.
- Improper rail splice detail.
- ▶ Bare copper EGC run in contact with aluminum rack components (dissimilar metals, NEC110.14).
- ▶ EGC is not continuous to all metal system components.
- No Grounding Electrode or GEC.
  - > EGC is unnecessarily subject to damage or failure.
- ▶ Improper installation of splice or termination.

© 2017 Institute for Building Technology and Safety

(









## SYSTEM GROUNDING



- ▶ NEC 690.43: Exposed non-current carrying parts of PV systems must be grounded in accordance with NEC 250.66 (AC GEC), 250.122 (EGC size) and 260.166 (DC GEC).
- ▶ NEC 110.3(B): shall be installed in accordance with any instructions included in the listing or labeling
  - > Torque requirements
  - > Inclusion of all bonding components
- ▶ Run in the same raceway with other conductors when leaving array (690.43(F))



#### **GROUNDING - A FEW NEC SPECIFICS**

- ▶ Equipment Grounding Conductor Installation: NEC 250.120
  - > Minimum #6AWG if subject to physical damage
- Size of EGC: 250.122, Table 250.122
  - > Based on the size of the overcurrent protection device in the circuit
- NEC Article 690, Section V
  - > All metal parts must be grounded (690.43(A))
  - > And more...
- Ungrounded systems may use AC EGC as GEC (NEC 690.47(C)(3))
- AC system GEC- must be continuous (NEC 250.64(C))

© 2017 Institute for Building Technology and Safety

8

































#### WIRE MANAGEMENT



10-41% deficiency rate

- Conductors in direct contact with roof surface.
- Improper identification of conductor (wrong wire colors, fused strings not identified).
- ▶ AC/DC conductors sharing a trough without separation or identification.
- No bushings used at conduit entry.
- ▶ Conductors not protected from prolonged exposure.
- ▶ Splice not consistent with insulation rating.
- ▶ Conductors with improper bend radius and strained.



#### WIRE MANAGEMENT



- Conductor management
  - > NEC 334.15: Protected from physical damage
  - > NEC 334.24: Radius of inner curve of bend shall not be less than 5 times diameter
  - > NEC 334.30: Secured every 4.5ft and within 12" of enclosures, conduit entry points
  - > NEC 690.31(B): Clearly grouped and identified (points of termination, connection and splice points)
  - > NEC 110.14(B): Spliced adequately

© 2017 Institute for Building Technology and Safety



#### WIRE MANAGEMENT



- Conductor Identification
  - NEC 200.6: grounded conductors must be white, gray or 3 striped (#6AWG ≥)
  - > NEC 250.119: EGC must be green bare, or green with yellow stripes (#6AWG ≥)
  - > NEC 310.110: Ungrounded- must be distinguishable form grounded and EGC
  - > NEC 690.31(B): AC and DC must be separated, grouped, identified























#### **SYSTEM LABELING**

20-50% deficiency rate



- ▶ Handwritten or illegible.
- Labeling is present but values are not present or are incorrect.
- ▶ Improper identification of hazard (AC vs. DC, Grounded vs. Ungrounded).
- Labels not suited for location or falling off, faded.
- Labels are missing.

© 2017 Institute for Building Technology and Safety



## WARNINGS AND LABELING

- ▶ Shall meet the requirements of 110.21(B)
- Field Applied Hazard Marking
  - > (1) Must effectively warn personnel (words, colors, symbols)
    - Info. Note: ANSIZ535.4-2011: .12" tall and visible from a safe viewing distance form the hazard
  - > (2) Permanently affixed and not handwritten
    - Exception: if likely to change, can be handwritten (NA)
  - > (3) Must be durable enough to handle environment where in stalled





#### **SOURCES:**

NATIONAL ELECTRIC CODE 2014, NFPA, 2014

"MIKE HOLT'S ILLUSTRATED GUIDE TO DIRECTORY, IDENTIFICATION, LABEL, MARKING, PLAQUE AND SIGN REQUIREMENTS FOR SOLAR PV SYSTEMS", MIKE HOLT, FREE ONLINE DOWNLOAD 2016

*NEW LABELS BRING CLARITY TO PV INFRASTRUCTURE,* TODD FRIES, SOLAR INDUSTRY MAGAZINE, ZACKIN PUBLICATIONS- 2013, ACCESSED 2016

UNDERSTANDING THE NEC AND ITS IMPACT ON PV SYSTEMS, SOLARPRO, REBEKAH HREN AND BRIAN MEHALIC, ISSUE 7.3 APRIL/MAY 2014



