Dear Chairman Perry and Ranking Member Titus:

As the Subcommittee on Economic Development, Public Buildings, and Emergency Management considers the value of the Federal Emergency Management Agency’s (FEMA) mitigation expenditures, we write to call your attention to the well-documented return on investment that the adoption and effective implementation of resilient building codes provides as well as the longstanding bipartisan support that enabled and encouraged FEMA to focus on these activities. The Subcommittee’s May 1st hearing is particularly timely as it marks the beginning of Building Safety Month, an international public awareness effort to highlight the importance of building safety professionals in ensuring the resilience and safety of our built environment.

Numerous studies confirm that the adoption and implementation of current model building codes is one of the best mitigation strategies for lessening the impacts of natural hazards, including hurricanes and flooding. \(^1\), \(^2\), \(^3\), \(^4\), \(^5\) The National Institute of Building Sciences (NIBS) – a Congressionally chartered building science organization – estimates that building to modern building codes saves $11 dollars for every $1 dollar invested through earthquake, flood, and wind mitigation benefits, while retrofitting 2.5 million homes in the wildland urban interface to wildfire codes could provide a nationwide benefit-cost ratio as high as $8 dollars for every $1 dollar invested. \(^6\) FEMA projects that if all future construction adhered to current model codes, the nation would avoid more than $600 billion dollars in cumulative losses from floods, hurricanes, and earthquakes by 2060. \(^7\) Three U.S. Department of Energy National Laboratories recently found that during prolonged weather-induced power outages, coupled with extreme heat or cold, current codes can reduce deaths due to extreme heat by 80% and extreme cold by 30%. \(^8\)

In addition, contemporary research continues to find that modern model building codes have no appreciable implications for housing affordability \(^9\), \(^10\), \(^11\)—in fact, no peer-reviewed research has found otherwise. One study considering the role of government regulation on home prices found that

---

\(^7\) FEMA, *Protecting Communities and Saving Money: The Case for Adopting Building Codes* (Nov. 2020).
\(^10\) NEHRP Consultants Joint Venture, *Cost Analyses and Benefit Studies for Earthquake-Resistant Construction in Memphis, Tennessee*, NIST GCR 14-917-26 (2013) (adopting stronger codes would add less than 1-percent to the construction while reducing annualized loss—in terms of repair cost, collapse probability, and fatalities—by approximately 50-percent).
\(^11\) Porter, K., *Resilience-related building-code changes don’t affect affordability*, SPA Risk LLC Working Paper Series 2019-01 (2019) (over the nearly 30-year period studied only increased a home’s purchase price by around a half a percentage point in earthquake country or in an area affected by riverine flood).
construction costs – including labor and materials – were flat from 1980 to 2013, a period during which construction codes were widely adopted and updated.\(^\text{12}\)

In recognition of their well-documented benefits, FEMA has incentivized and encouraged the use of resilient codes at all levels of government to “increase the resilience of communities after a disaster,” “protect lives and property,” and to “reduce[e] the need for future Federal disaster recovery funding and other assistance.”\(^\text{13}\) This approach transcends partisanship; it was significantly advanced during the Trump Administration through FEMA\(^\text{14}\) as well as within the Federal government’s National Mitigation Investment Strategy— developed by the Mitigation Framework Leadership Group (MitFLG)\(^\text{15}\) – and continues today.

FEMA’s efforts have similarly, and consistently, received bipartisan support from Congress. The most comprehensive update to FEMA’s natural hazards response and recovery authorities, the Robert T. Stafford Act Disaster Relief and Emergency Assistance Act (P.L. 93-288, as amended), in the last decade was drafted and advanced by Republican leadership in the U.S. House and Senate. That legislation, the Disaster Recovery and Reinvestment Act of 2018 (Div. D of P.L. 115-254), for the first time authorized FEMA to provide grants pre-disaster to assist communities in adopting, updating, and enforcing resilient building codes.\(^\text{16}\) Congress’ doing so sensibly expanded FEMA’s preexisting post-disaster support for these same activities, which FEMA has supported since the 1990s. These activities principally support the evaluation and mitigation of existing risk to the built environment through experts, community engagement, and training. Recognizing that some jurisdictions have adopted stronger codes than those adopted at the state level, FEMA’s Fiscal Year 2023 Building Resilient Infrastructure and Communities (BRIC) grant program incentivizes both state and local adoption and implementation of hazard-resistant codes in making mitigation project awards.

We welcome the Subcommittee’s review of FEMA’s mitigation leadership and encourage continued bipartisan support for the development, adoption, and effective implementation of resilient building codes and standards.

Sincerely,

\[\text{AEC Science & Technology, LLC}
\text{American Concrete Institute}
\text{American Property Casualty Insurance Association}
\text{American Society of Civil Engineers}
\text{American Society of Interior Designers}
\text{Applied Technology Council}
\text{ASHRAE}
\]

---


\(^{14}\) Id.


\(^{16}\) Compare H.R. 4460 (committee-passed), 115th Cong. (2018) (authoring grants “to establish and carry out enforcement activities to implement the latest published editions of relevant consensus-based codes, specifications, and standards that incorporate the latest hazard-resistant designs”), with H.R. 302 (enacted), 115th Cong. (2018) (“to establish and carry out enforcement activities and implement the latest published editions of relevant consensus-based codes, specifications, and standards that incorporate the latest hazard-resistant designs”) (clarifying that grants can support both the adoption and enforcement of resilient codes).
Association of State Floodplain Managers
BuildStrong America
Concrete Foundations Association
Concrete Reinforcing Steel Institute
Congressional Fire Services Institute
Earthquake Engineering Research Institute
EPDM Roofing Association
Federal Alliance for Safe Homes – FLASH, Inc.
Flood Mitigation Industry Association
Habitat for Humanity International
Institute for Market Transformation
Insurance Institute for Business & Home Safety
International Association of Fire Chiefs
International Association of Fire Fighters
International Association of Structural Movers
International Code Council
International Institute of Building Enclosure Consultants
Knauf Insulation
National Association of Mutual Insurance Companies
National Association of State Energy Officials
National Association of State Fire Marshals
National Council of Structural Engineers Associations
National Environmental Health Association
National Fire Protection Association
National Ready Mixed Concrete Association
National Society of Professional Engineers
National Electrical Manufacturers Association
Natural Resources Defense Council
North American Insulation Manufacturers Association
Polyisocyanurate Insulation Manufacturers Association
Portland Cement Association
Precast/Prestressed Concrete Institute
Reinsurance Association of America
Sheet Metal and Air Conditioning Contractors National Association
Single Ply Roofing Industry
Structural Engineers Association of California
Tilt-Up Concrete Association
U.S. Green Building Council
U.S. Resiliency Council
Union of Concerned Scientists