PUBLIC CODE CHANGE PROPOSAL FORM
FOR PUBLIC PROPOSALS TO THE INTERNATIONAL CODES
2012/2013 CODE DEVELOPMENT CYCLE

CLOSING DATES: Group A Codes: January 3, 2012
Group B Codes: January 3, 2013

1) Name: __________________________ Date: ________________
Jurisdiction/Company: __________________________
Submitted on Behalf of: __________________________
Address: _______________________________________
City: __________________________ State: __________ Zip Code: __________
Phone: __________________________ Ext. __________ Fax: __________
E-mail address (see # 4 below): __________________________

2) Copyright Release: In accordance with Council Policy #28 Code Development, all Code Change Proposals, Floor Modifications and Public Comments are required to include a copyright release. A copy of the copyright release form is included at the end of this form. Please follow the directions on the form. This form as well as an alternative release form can also be downloaded from the ICC website at www.iccsafe.org. If you have previously executed the copyright release for this cycle, please check the below:

______ 2012/2013 Cycle copyright release on file

3) Code: Indicate appropriate International Code(s) associated with this Public Proposal – Please use Acronym: __________

If you have also submitted a separate coordination change to another I-Code, please indicate the code: __________
(See section below for list of names and acronyms for the International Codes).

NOTE: Sections of the International Codes that have a letter designation in brackets in front of them are the responsibility of a different committee than the committee normally responsible for that code. For instance, Section 301.1.4 of the IEBC has a [B] in front of it, meaning that this section is the responsibility of one of the IBC Code Development Committees (in this case, IBC-S). Any proposed changes to Section 301.1.4 will be heard by the IBC-Structural committee.

Therefore, some code change proposals to Group B code text may be due in order to be heard by Group A code development committees, and vice versa. Please go to www.iccsafe.org/responsibilities for detailed information on Group A and Group B Code Development Committee responsibilities.

4) E-mail address: Your email address will be published with your code change proposal unless you check here: ______

5) Information required: Be sure to format your proposal and include all information as indicated below and in the Code Change Proposal Instructions’ section on Page 2 of this form.

6) Format: Proposals should be sent to the office below via regular mail or email. An e-mail submittal is preferred, including an electronic version, in either WordPerfect or Word. The only formatting that is needed is BOLDING, STRIKEOUT AND UNDERLINING. Please do not provide additional formatting such as tabs, columns, etc., as this will be done by ICC. REMOVE TRACKING CHANGES, AUTOMATIC NUMBERING, OR ANY OTHER ADVANCED FORMATTING TOOLS THAT ARE PROVIDED BY WORD, FROM FILES CONTAINING YOUR CODE CHANGE PROPOSAL THAT YOU SEND TO ICC.

Please use a separate form (see page 3) for each proposal submitted. Note: All code changes received will receive an acknowledgment by approximately two weeks after the code change deadline. Please contact the ICC staff listed below if you have not received an acknowledgment by two weeks after the code change deadline.

Please check here if separate graphic file provided. □ Graphic materials (Graphs, maps, drawings, charts, photographs, etc.) must be submitted as separate electronic files in .CDR, IA, TIF or .JPG format (300 DPI Minimum resolution; 600 DPI or more preferred) even though they may also be embedded in your Word or WordPerfect submittal.
CODE CHANGE PROPOSAL FORM

Code: RB–12/13

Code Sections/Tables/Figures Proposed for Revision (3.3.2); Note: If the proposal is for a new section, indicate (new).

Proponent: Name/Company/Representing (3.3.1): (NOTE: DO NOT USE ACRONYMS FOR YOUR COMPANY OR ORGANIZATIONAL NAME)

Revise as follows:

TABLE R301.2.1.2
WINDBORNE DEBRIS PROTECTION FASTENING SCHEDULE
FOR WOOD STRUCTURAL PANELS
a. This table is based on a 130mph basic wind speeds and a 33-foot mean roof height.

R505.1.1 Applicability limits. The provisions of this section shall control the construction of cold-formed steel floor framing for buildings not greater than 60 feet (18 288 mm) in length perpendicular to the joist span, not greater than 40 feet (12 192 mm) in width parallel to the joist span, and less than or equal to three stories above grade plane. Cold-formed steel floor framing constructed in accordance with the provisions of this section shall be limited to sites subjected to a maximum basic design wind speed of 110 miles per hour (49 m/s), Exposure B or C, and a maximum ground snow load of 70 pounds per square foot (3.35 kPa).

R505.1.1 Applicability limits. The provisions of this section shall control the construction of cold-formed steel floor framing for buildings not greater than 60 feet (18 288 mm) in length perpendicular to the joist span, not greater than 40 feet (12 192 mm) in width parallel to the joist span, and less than or equal to three stories above grade plane. Cold-formed steel floor framing constructed in accordance with the provisions of this section shall be limited to sites subjected to a maximum basic design wind speed of 110 miles per hour (49 m/s), Exposure B or C, and a maximum ground snow load of 70 pounds per square foot (3.35 kPa).

TABLE R602.3.1
MAXIMUM ALLOWABLE LENGTH OF WOOD WALL STUDS EXPOSED TO WIND SPEEDS OF 100 mph OR LESS IN SEISMIC DESIGN CATEGORIES A, B, C, D0, D1 and D2
a. Table is limited to buildings located where the basic wind speed is 100mph or less and for which the seismic design category is A, B, C, D0, D1, or D2

R602.10.1.2 Length of bracing. The length of bracing along each braced wall line shall be the greater of that required by the basic design wind speed and braced wall line spacing in accordance with Table R602.10.1.2(1) as adjusted by the factors in the footnotes or the Seismic Design Category and braced wall line length in accordance with Table R602.10.1.2(2) as adjusted by the factors in Table R602.10.1.2(3) or braced wall panel location requirements of Section R602.10.1.4. Only

TABLE R602.10.3.1
MINIMUM LENGTH REQUIREMENTS FOR BRACED WALL PANELS

TABLE R602.10.3.2
MINIMUM LENGTH REQUIREMENTS AND HOLD-DOWN FORCES FOR METHOD ABW BRACED WALL PANELS

R603.1.1 Applicability limits. The provisions of this section shall control the construction of exterior cold-formed steel wall framing and interior load-bearing cold-formed steel wall framing for buildings not more than 60 feet (18 288 mm) long perpendicular to the joist or truss span, not more than 40 feet (12 192 mm) wide parallel to the joist or truss span, and less than or equal to three stories above grade plane. All exterior walls installed in accordance with the provisions of this section shall be considered as load-bearing walls. Cold-formed steel walls constructed in accordance with the provisions of this section shall be limited to sites subjected to a maximum basic design wind speed of 110 miles per hour (49 m/s) Exposure B or C and a maximum ground snow load of 70 pounds per square foot (3.35 kPa).

TABLE R603.3.1
WALL TO FOUNDATION OR FLOOR CONNECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>FRAMING CONDITION</th>
<th>85 B</th>
<th>90 B</th>
<th>100 B</th>
<th>110 B</th>
<th>100 C</th>
<th>< 110 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC WIND SPEED (mph) AND EXPOSURE</td>
<td>85 C</td>
<td>90 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R603.9.4 Uplift connection requirements. Uplift connections shall be provided in accordance with this section.

R603.9.4.1 Where the basic wind speeds are in excess of exceeds 100 miles per hour (45 m/s) and Exposure C or D applies, walls shall be provided wind direct uplift connections in accordance with AISI S230, Section E13.3, and AISI S230, Section F7.2, as required for 110 miles per hour (49 m/s), Exposure C.
TABLE R603.3.2(2)
24-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY\(^{h, b, c}\)
33 ksi STEEL

<table>
<thead>
<tr>
<th>BASIC WIND SPEED</th>
<th>MEMBER SIZE</th>
<th>MINIMUM STUD SPACING (inches)</th>
<th>STUD THICKNESS (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Member</td>
<td>8-Foot Studs</td>
<td>9-Foot Studs</td>
</tr>
<tr>
<td>Exp. B</td>
<td>Exp. C</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

(Make same change for Tables R603.3.2(3) through R603.3.2(31), and Tables R603.3.2.1(1) through R603.3.2.1(4))

TABLE R603.8
HEAD AND SILL TRACK SPAN

b. Head and sill track spans are based on components and cladding wind pressures speeds and 48 inch tributary span.

R611.2 Applicability limits. The provisions of this section shall apply to the construction of exterior concrete walls for buildings not greater than 60 feet (18 288 mm) in plan dimensions, floors with clear spans not greater than 32 feet (9754 mm) and roofs with clear spans not greater than 40 feet (12 192 mm). Buildings shall not exceed 35 feet (10 668 mm) in mean roof height or two stories in height above-grade. Floor/ceiling dead loads shall not exceed 10 pounds per square foot (479 Pa), roof/ceiling dead loads shall not exceed 15 pounds per square foot (718 Pa) and attic live loads shall not exceed 20 pounds per square foot (958 Pa). Roof overhangs shall not exceed 2 feet (610 mm) of horizontal projection beyond the exterior wall and the dead load of the overhangs shall not exceed 8 pounds per square foot (383 Pa).

Walls constructed in accordance with the provisions of this section shall be limited to buildings subjected to a maximum basic design wind speed of 130 miles per hour (58 m/s) Exposure B, 110 miles per hour (49 m/s) Exposure C and 100 miles per hour (45 m/s) Exposure D. Walls constructed in accordance with the provisions of this section shall be limited to detached one- and two-family dwellings and townhouses assigned to Seismic Design Category A or B, and detached one- and two-family dwellings assigned to Seismic Design Category C.

TABLE R611.6(1)
MINIMUM VERTICAL REINFORCEMENT FOR FLAT ABOVE-GRADE WALLS\(^{h, b, c, d, e}\)

<table>
<thead>
<tr>
<th>BASIC MAXIMUM WIND SPEED (mph)</th>
<th>MAXIMUM UNSUPPORTED WALL HEIGHT PER STORY (feet)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)(^{f, g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Category</td>
<td></td>
<td>Nominal(^{h}) wall thickness (inches)</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Top’</td>
<td>Side’</td>
<td>10</td>
</tr>
<tr>
<td>Top’</td>
<td>Side’</td>
<td>Top’</td>
</tr>
<tr>
<td>Top’</td>
<td>Side’</td>
<td>Side’</td>
</tr>
</tbody>
</table>

(Make same change for Tables R611(2) through R611(4))

R613.2 Applicability limits. The provisions of this section shall control the construction of exterior structural insulated panel walls and interior load-bearing structural insulated panel walls for buildings not greater than 60 feet (18 288 mm) in length perpendicular to the joist or truss span, not greater than 40 feet (12 192 mm) in width parallel to the joist or truss span and not greater than two stories in height with each wall not greater than 10 feet (3048 mm) high. All exterior walls installed in accordance with the provisions of this section shall be considered as load-bearing walls. Structural insulated panel walls constructed in accordance with the provisions of this section shall be limited to sites where the basic design wind speed does not exceed of 130 miles per hour (58 m/s), the Exposure Category is A, B or C, and a maximum the ground snow load does not exceed of 70 pounds per foot (3.35 kPa), and the Seismic Design Category is Categories A, B, or C.

TABLE R613.5(1)
MINIMUM THICKNESS FOR SIP WALL SUPPORTING SIP LIGHT-FRAME ROOF ONLY (inches)

<table>
<thead>
<tr>
<th>BASIC WIND SPEED (3-second gust) (mph)</th>
<th>SNOW LOAD (psf)</th>
<th>MINIMUM STUD THICKNESS (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Exp. A/B</td>
<td>Exp. C</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wall Height (ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wall Height (ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wall Height (ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
TABLE R613.5(2)
MINIMUM THICKNESS FOR SIP WALL SUPPORTING SIP OR LIGHT-FRAME ONE STORY AND ROOF (inches)

<table>
<thead>
<tr>
<th>BASIC WIND SPEED (3-second gust) (mph)</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNOW LOAD (psf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Height (ft)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Exp. A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM STUD THICKNESS (mils)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Height (ft)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Wall Height (ft)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

R802.10.2.1 Applicability limits. The provisions of this section shall control the design of truss roof framing when snowcontrols for buildings not greater than 60 feet (18,288 mm) in length perpendicular to the joist, rafter or truss span, not greater than 36 feet (10,973 mm) in width parallel to the joist, rafter or truss span, not greater than two stories in height with each story not greater than 10 feet (3048 mm) high, and roof slopes not smaller than 3:12 (25-percent slope) or greater than 12:12 (100-percent slope). Truss roof framing constructed in accordance with the provisions of this section shall be limited to sites where the basic subjected to a maximum design wind speed does not exceed of 110 miles per hour (49 m/s), the Exposure Category is A, B or C, and a maximum the ground snow load does not exceed of 70 psf (3352 Pa). For consistent loading of all truss types, roof snow load is to be computed as: 0.7 p_g.

R804.1.1 Applicability limits. The provisions of this section shall control the construction of cold-formed steel roof framing for buildings not greater than 60 feet (18,288 mm) perpendicular to the joist, rafter or truss span, not greater than 40 feet (12,192 mm) in width parallel to the joist span or truss, less than or equal to three stories above grade plane and with roof slopes not less than 3:12 (25-percent slope) or greater than 12:12 (100 percent slope). Cold-formed steel roof framing constructed in accordance with the provisions of this section shall be limited to sites where the basic subjected to a maximum design wind speed does not exceed of 110 miles per hour (49 m/s), the Exposure Category is B or C, and a maximum the ground snow load does not exceed of 70 pounds per square foot (3350 Pa).

R804.3.2.1 Minimum roof rafter sizes. Roof rafter size and thickness shall be determined in accordance with the limits set forth in Tables R804.3.2.1(1) and R804.3.2.1(2) based on the horizontal projection of the roof rafter span. For determination of roof rafter sizes, reduction of roof spans shall be permitted when a roof rafter support brace is installed in accordance with Section R804.3.2.2. The reduced roof rafter span shall be taken as the larger of the distance from the roof rafter support brace to the ridge or to the heel measured horizontally.

For the purpose of determining roof rafter sizes in Tables R804.3.2.1(1) and R804.3.2.1(2), basic wind speeds shall be converted to equivalent ground snow loads in accordance with Table R804.3.2.1(3). Roof rafter sizes shall be based on the higher of the ground snow load or the equivalent snow load converted from the basic wind speed.

R804.3.3 Hip framing. Hip framing shall consist of jack-rafters, hip members, hip support columns and connections in accordance with this section, or shall be in accordance with an approved design. The provisions of this section for hip members and hip support columns shall apply only where the jack rafter slope is greater than or equal to the roof slope. For the purposes of determining member sizes in this section, basic wind speeds shall be converted to equivalent ground snow load in accordance with Table R804.3.2.1(3).

R905.3.7 Application. Tile shall be applied in accordance with this chapter and the manufacturer's installation instructions, based on the following:

- Clay and concrete roof tiles shall be fastened in accordance with this section and the manufacturer's installation instructions. Perimeter tiles shall be fastened with a minimum of one fastener per tile. Tiles with installed weight less than 9 pounds per square foot (0.4 kg/m2) require a minimum of one fastener per tile regardless of roof slope. Clay and concrete roof tile attachment shall be in accordance with the manufacturer's installation instructions where applied in areas where the basic wind speed exceeds 100 miles per hour (45 m/s) and on buildings where the roof is located more than 40 feet (12,192 mm) above grade. In areas subject to snow, a minimum of two fasteners per tile is required. In all other areas, clay and concrete roof tiles shall be attached in accordance with Table R905.3.7.

Reason: The purpose of this proposal is to coordinate terminology in the code. Figure R301.2.4(A) supplies the “basic wind speed”, defined as “”. This is the correct term that should be used throughout the code whenever wind speed is discussed. Further, it is noted this is the specified design wind speed for a site as specified in ASCE 7 and based on an extensive modeling process using historical data, wind characteristics and computer simulations. It is not necessarily the “maximum” wind speed that can be experienced by a site, nor does it suggest the “maximum” wind speed an element is capable of resisting (due to factors of safety in material standards and design procedures). This corrects references throughout the IRC to properly refer to “basic wind speed.”
Cost Impact:

Public Hearing: Committee: AS AM D
Assembly: ASF AMF DF
PUBLIC CODE CHANGE PROPOSAL FORM
FOR PUBLIC PROPOSALS TO THE INTERNATIONAL CODES
2012/2013 CODE DEVELOPMENT CYCLE

CLOSING DATES: Group A Codes: January 3, 2012
Group B Codes: January 3, 2013

See Item 3 of these instructions for additional information concerning Group A and Group B Code Development Committees Responsibilities

1) Name: Date:
Jurisdiction/Company:
Submitted on Behalf of:
Address:
City: State: Zip Code:
Phone: Ext. Fax:
E-mail address (see # 4 below):

2) Copyright Release: In accordance with Council Policy #28 Code Development, all Code Change Proposals, Floor Modifications and Public Comments are required to include a copyright release. A copy of the copyright release form is included at the end of this form. Please follow the directions on the form. This form as well as an alternative release form can also be downloaded from the ICC website at www.icesafe.org. If you have previously executed the copyright release for this cycle, please check the below:

______ 2012/2013 Cycle copyright release on file

3) Code: Indicate appropriate International Code(s) associated with this Public Proposal – Please use Acronym: ________
If you have also submitted a separate coordination change to another I-Code, please indicate the code: ________
(See section below for list of names and acronyms for the International Codes).

NOTE: Sections of the International Codes that have a letter designation in brackets in front of them are the responsibility of a different committee than the committee normally responsible for that code. For instance, Section 301.1.4 of the IEBC has a [B] in front of it, meaning that this section is the responsibility of one of the IBC Code Development Committees (in this case, IBC-S). Any proposed changes to Section 301.1.4 will be heard by the IBC-Structural committee.

Therefore, some code change proposals to Group B code text may be due in order to be heard by Group A code development committees, and vice versa. Please go to www.icesafe.org/responsibilities for detailed information on Group A and Group B Code Development Committee responsibilities.

4) E-mail address: Your email address will be published with your code change proposal unless you check here: ______

5) Information required: Be sure to format your proposal and include all information as indicated below and in the Code Change Proposal Instructions’ section on Page 2 of this form.

6) Format: Proposals should be sent to the office below via regular mail or email. An e-mail submittal is preferred, including an electronic version, in either WordPerfect or Word. The only formatting that is needed is BOLDING, STRIKEOUT AND UNDERLINING. Please do not provide additional formatting such as tabs, columns, etc., as this will be done by ICC. REMOVE TRACKING CHANGES, AUTOMATIC NUMBERING, OR ANY OTHER ADVANCED FORMATTING TOOLS THAT ARE PROVIDED BY WORD, FROM FILES CONTAINING YOUR CODE CHANGE PROPOSAL THAT YOU SEND TO ICC.

Please use a separate form (see page 3) for each proposal submitted. Note: All code changes received will receive an acknowledgment by approximately two weeks after the code change deadline. Please contact the ICC staff listed below if you have not received an acknowledgment by two weeks after the code change deadline.

Please check here if separate graphic file provided. □ Graphic materials (Graphs, maps, drawings, charts, photographs, etc.) must be submitted as separate electronic files in .CDR, IA, TIF or .JPG format (300 DPI Minimum resolution; 600 DPI or more preferred) even though they may also be embedded in your Word or WordPerfect submittal.
CODE CHANGE PROPOSAL FORM
(See instructions on page 2)

Code: RB–12/13

403.1.3

Proponent: Name/Company/Representing (3.3.1): (NOTE: DO NOT USE ACRONYMS FOR YOUR COMPANY OR ORGANIZATIONAL NAME)

Revise as follows:

R403.1.3 Seismic reinforcing. Concrete footings in buildings located in Seismic Design Categories D0, D1 and D2, as established in Table R301.2(1), shall have minimum reinforcement as described by this section. Bottom reinforcement shall be located a minimum of 3 inches (76 mm) clear from the bottom of the footing.

Exception: In detached one- and two-family dwellings which are three stories or less in height and constructed with stud bearing walls isolated plain concrete footings supporting columns or pedestals are permitted.

Concrete footings supporting walls shall have a minimum of two No. 4 continuous longitudinal reinforcing bars.

In Seismic Design Categories D0, D1 and D2 where a construction joint is created between a concrete footing and a stem wall, a minimum of one No. 4 bar shall be installed at not more than 4 feet (1219 mm) on center. The vertical bar shall extend to 3 inches (76 mm) clear of the bottom of the footing, have a standard hook and extend a minimum of 14 inches (357 mm) into the stem wall.

In Seismic Design Categories D0, D1 and D2 where a grouted masonry stem wall is supported on a concrete footing and stem wall, a minimum of one No. 4 bar shall be installed at not more than 4 feet (1219 mm) on center. The vertical bar shall extend to 3 inches (76 mm) clear of the bottom of the footing and have a standard hook.

In Seismic Design Categories D0, D1 and D2 masonry stem walls without solid grout and vertical reinforcing are not permitted.

Exception: In detached one- and two-family dwellings which are three stories or less in height and constructed with stud bearing walls isolated plain concrete footings supporting columns or pedestals are permitted.

R403.1.3.1 Foundations with stemwalls. Foundations with concrete or masonry stem walls shall have installed a minimum of one continuous No. 4 bar within 12 inches (305 mm) of the top of the wall and one continuous No. 4 bar located 3 inches (76 mm) to 4 inches (102 mm) from the bottom of the footing.

Where a construction joint is created between a concrete footing and a stem wall, a minimum of one No. 4 vertical bar shall be installed at not more than 4 feet (1219 mm) on center. The vertical bar shall extend to 3 inches (76 mm) clear of the bottom of the footing, have a standard hook and extend a minimum of 14 inches (357 mm) into the stem wall.

Masonry stem walls shall be solid grouted and provided with vertical reinforcing. Where a masonry stem wall is supported on a concrete footing or stem wall, a minimum of one No. 4 vertical bar shall be installed at not more than 4 feet (1219 mm) on center. The vertical bar shall extend to 3 inches (76 mm) clear of the bottom of the footing and have a standard hook.

R403.1.3.2 Slabs-on-ground with turned-down footings. Slabs on ground with turned down footings shall have a minimum of one No. 4 bar at the top and the bottom of the footing.

Exception: For slabs-on-ground cast monolithically with the footing, locating one No. 5 bar or two No. 4 bars in the middle third of the footing depth shall be permitted as an alternative to placement at the footing top and bottom.

Where the slab is not cast monolithically with the footing, No. 3 or larger vertical dowels with standard hooks on each end shall be provided in accordance with Figure R403.1.3.2. Standard hooks shall comply with Section R611.5.4.5.

Reason:
The purpose of this amendment is to revise the requirements for reinforcing in footings and stem walls for dwellings in Seismic Design Category D0, D1 and D2. In the previous cycle, the allowance for using plain concrete footings to support light-frame bearing walls was removed. The proponent’s intent was to require minimum continuous reinforcing in all footings in high-seismic territory. While we question the need for this reinforcing, the
additional cost is minimal and we do not propose its removal. However, unlike the similar change made in the IBC, the IRC language can be interpreted as requiring that a continuous footing needs both minimum longitudinal and transverse reinforcing sized in accordance with ACI 318. To prevent an engineering design being required, a provision calling for 2-#4 continuous bars is supplied.

Additionally, an editorial reorganization of the section and subsections is proposed. The primary goal is to unite all of the provisions for both horizontal reinforcing and vertical dowels in footings supporting concrete and masonry stem walls under one subsection. The exception for isolated spread footings supporting light-frame construction is also moved up to follow the charging language for the section.

Cost Impact:

Public Hearing: Committee: AS AM D
Assembly: ASF AMF DF
PUBLIC CODE CHANGE PROPOSAL FORM
FOR PUBLIC PROPOSALS TO THE INTERNATIONAL CODES
2012/2013 CODE DEVELOPMENT CYCLE

CLOSING DATES: Group A Codes: January 3, 2012
Group B Codes: January 3, 2013

See Item 3 of these instructions for additional information concerning Group A and Group B Code Development Committees Responsibilities

1)
<table>
<thead>
<tr>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurisdiction/Company:</td>
<td></td>
</tr>
<tr>
<td>Submitted on Behalf of:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>State:</td>
</tr>
<tr>
<td>Phone:</td>
<td>Ext.</td>
</tr>
<tr>
<td>E-mail address (see # 4 below):</td>
<td></td>
</tr>
</tbody>
</table>

2) Copyright Release: In accordance with Council Policy #28 Code Development, all Code Change Proposals, Floor Modifications and Public Comments are required to include a copyright release. A copy of the copyright release form is included at the end of this form. Please follow the directions on the form. This form as well as an alternative release form can also be downloaded from the ICC website at www.icesafe.org. If you have previously executed the copyright release for this cycle, please check the below:

______ 2012/2013 Cycle copyright release on file

3) Code: Indicate appropriate International Code(s) associated with this Public Proposal – Please use Acronym: ________

If you have also submitted a separate coordination change to another I-Code, please indicate the code: ________

(See section below for list of names and acronyms for the International Codes).

NOTE: Sections of the International Codes that have a letter designation in brackets in front of them are the responsibility of a different committee than the committee normally responsible for that code. For instance, Section 301.1.4 of the IEBC has a [B] in front of it, meaning that this section is the responsibility of one of the IBC Code Development Committees (in this case, IBC-S). Any proposed changes to Section 301.1.4 will be heard by the IBC-Structural committee.

Therefore, some code change proposals to Group B code text may be due in order to be heard by Group A code development committees, and vice versa. Please go to www.icesafe.org/responsibilities for detailed information on Group A and Group B Code Development Committee responsibilities.

4) E-mail address: Your email address will be published with your code change proposal unless you check here: ________

5) Information required: Be sure to format your proposal and include all information as indicated below and in the Code Change Proposal Instructions’ section on Page 2 of this form.

6) Format: Proposals should be sent to the office below via regular mail or email. An e-mail submittal is preferred, including an electronic version, in either WordPerfect or Word. The only formatting that is needed is BOLDING, STRIKEOUT AND UNDERLINING. Please do not provide additional formatting such as tabs, columns, etc., as this will be done by ICC. REMOVE TRACKING CHANGES, AUTOMATIC NUMBERING, OR ANY OTHER ADVANCED FORMATTING TOOLS THAT ARE PROVIDED BY WORD, FROM FILES CONTAINING YOUR CODE CHANGE PROPOSAL THAT YOU SEND TO ICC.

Please use a separate form (see page 3) for each proposal submitted. Note: All code changes received will receive an acknowledgment by approximately two weeks after the code change deadline. Please contact the ICC staff listed below if you have not received an acknowledgment by two weeks after the code change deadline.

Please check here if separate graphic file provided. □ Graphic materials (Graphs, maps, drawings, charts, photographs, etc.) must be submitted as separate electronic files in .CDR, IA, TIF or .JPG format (300 DPI Minimum resolution; 600 DPI or more preferred) even though they may also be embedded in your Word or WordPerfect submittal.
CODE CHANGE PROPOSAL FORM

(See instructions on page 2)

Code: RB–12/13

Code Sections/Tables/Figures Proposed for Revision (3.3.2); Note: If the proposal is for a new section, indicate (new).

R602.10.11

Proponent: Name/Company/Representing (3.3.1): (*NOTE: DO NOT USE ACRONYMS FOR YOUR COMPANY OR ORGANIZATIONAL NAME*)

Revise as follows:

R602.10.11 Cripple wall bracing. Cripple walls shall be constructed in accordance with Section R602.9 and braced in accordance with this section. Cripple walls shall be braced with the length and method of bracing used for the wall above in accordance with Tables R602.10.3(1) and R602.10.3(3), and the applicable adjustment factors in Table R602.10.3(2) or R602.10.3(4), respectively, except that the length of cripple wall bracing shall be multiplied by a factor of 1.15. The distance between adjacent edges of braced wall panels shall be reduced from 20 feet (6096 mm) to 14 feet (4267 mm).

Reason: The purpose of this amendment is to correct an error made in correlating the 2012 braced wall provisions. The reduction in spacing between braced wall panels in a cripple wall originated from cripple wall failures observed in seismic events such as the 1994 Northridge Earthquake. Working through the ICC Ad-Hoc Committee on Wall Bracing, NAHB developed a proposal for the 2009/2010 Code Development Cycle that reorganized the cripple wall bracing provisions and removed the spacing reduction for low-seismic areas. The proposal was approved at the Public Hearings and ratified by the consent agenda vote at the Final Action Hearings. Unfortunately, a separate effort by the Ad-Hoc Committee to correlate their comprehensive reorganization of the wall bracing section with a modification made by the IRC-Building/Energy Committee inadvertently resulted in the spacing reduction being reinstated for low-seismic areas. This amendment corrects that oversight and restores the original intent of the cripple wall proposal.

Cost Impact:

Public Hearing: Committee: AS AM D

Assembly: ASF AMF DF
PUBLIC CODE CHANGE PROPOSAL FORM
FOR PUBLIC PROPOSALS TO THE INTERNATIONAL CODES
2012/2013 CODE DEVELOPMENT CYCLE

CLOSING DATES: Group A Codes: January 3, 2012
 Group B Codes: January 3, 2013

See Item 3 of these instructions for additional information concerning Group A and Group B Code Development Committees Responsibilities

1) Name: Date:
Jurisdiction/Company:
Submitted on Behalf of:
Address:
City: State: Zip Code:
Phone: Ext. Fax:
E-mail address (see # 4 below):

2) Copyright Release: In accordance with Council Policy #28 Code Development, all Code Change Proposals, Floor Modifications and Public Comments are required to include a copyright release. A copy of the copyright release form is included at the end of this form. Please follow the directions on the form. This form as well as an alternative release form can also be downloaded from the ICC website at www.icesafe.org. If you have previously executed the copyright release for this cycle, please check the below:

_______ 2012/2013 Cycle copyright release on file

3) Code: Indicate appropriate International Code(s) associated with this Public Proposal – Please use Acronym: ________

If you have also submitted a separate coordination change to another I-Code, please indicate the code: ________
(See section below for list of names and acronyms for the International Codes).

NOTE: Sections of the International Codes that have a letter designation in brackets in front of them are the responsibility of a different committee than the committee normally responsible for that code. For instance, Section 301.1.4 of the IEBC has a [B] in front of it, meaning that this section is the responsibility of one of the IBC Code Development Committees (in this case, IBC-S). Any proposed changes to Section 301.1.4 will be heard by the IBC-Structural committee.

Therefore, some code change proposals to Group B code text may be due in order to be heard by Group A code development committees, and vice versa. Please go to www.icesafe.org/responsibilities for detailed information on Group A and Group B Code Development Committee responsibilities.

4) E-mail address: Your email address will be published with your code change proposal unless you check here: ________

5) Information required: Be sure to format your proposal and include all information as indicated below and in the Code Change Proposal Instructions’ section on Page 2 of this form.

6) Format: Proposals should be sent to the office below via regular mail or email. An e-mail submittal is preferred, including an electronic version, in either WordPerfect or Word. The only formatting that is needed is BOLDING, STRIKEOUT AND UNDERLINING. Please do not provide additional formatting such as tabs, columns, etc., as this will be done by ICC. REMOVE TRACKING CHANGES, AUTOMATIC NUMBERING, OR ANY OTHER ADVANCED FORMATTING TOOLS THAT ARE PROVIDED BY WORD, FROM FILES CONTAINING YOUR CODE CHANGE PROPOSAL THAT YOU SEND TO ICC.

Please use a separate form (see page 3) for each proposal submitted. Note: All code changes received will receive an acknowledgment by approximately two weeks after the code change deadline. Please contact the ICC staff listed below if you have not received an acknowledgment by two weeks after the code change deadline.

Please check here if separate graphic file provided. □ Graphic materials (Graphs, maps, drawings, charts, photographs, etc.) must be submitted as separate electronic files in .CDR, IA, TIF or .JPG format (300 DPI Minimum resolution; 600 DPI or more preferred) even though they may also be embedded in your Word or WordPerfect submittal.
Code: RB–12/13

Code Sections/Tables/Figures Proposed for Revision (3.3.2); Note: If the proposal is for a new section, indicate (new).

Proponent: Name/Company/Representing (3.3.1): (NOTE: DO NOT USE ACRONYMS FOR YOUR COMPANY OR ORGANIZATIONAL NAME)

Revise as follows:

R1001.11 Fireplace clearance. All wood beams, joists, studs and other combustible material shall have a clearance of not less than 2 inches (51 mm) from the front faces and sides of masonry fireplaces and not less than 4 inches (102 mm) from the back faces of masonry fireplaces. The air space shall not be filled, except to provide fire blocking in accordance with Section R1001.12.

Exceptions:

1. (No changes)
2. (No changes)
3. Exposed combustible trim and the edges of sheathing materials such as wood siding, flooring and gypsum board drywall shall be permitted to abut the masonry fireplace side walls and hearth extension in accordance with Figure R1001.11, provided such combustible trim or sheathing is a minimum of 12 inches (305 mm) from the inside surface of the nearest firebox lining.
4. (No changes)

Appendix Q
E3907.4 Repairing noncombustible surfaces—plaster, drywall and plasterboard

Vapor retarders table – gypsum

Reason:

The purpose of this code change is to correlate terminology in the code. The proper technical term for the product typically used for interior wall finishes and where fire protection required is “gypsum board”, not “drywall”:

Cost Impact:

Public Hearing: Committee: AS AM D
Assembly: ASF AMF DF